PHYSICAL INTERACTION MAPPINGS: UTILIZING COGNITIVE LOAD THEORY IN ORDER TO ENHANCE PHYSICAL PRODUCT INTERACTION

DS 80-3 Proceedings of the 20th International Conference on Engineering Design (ICED 15) Vol 3: Organisation and Management, Milan, Italy, 27-30.07.15

Year: 2015
Editor: Christian Weber, Stephan Husung, Marco Cantamessa, Gaetano Cascini, Dorian Marjanovic, Francesca Montagna
Author: Young, Bryan Gough; Wodehouse, Andrew; Sheridan, Marion
Series: ICED
Institution: University of Strathclyde, United Kingdom
Section: Design Organisation and Management
Page(s): 289-298
ISBN: 978-1-904670-66-7
ISSN: 2220-4334

Abstract

Learning to physically operate traditional products can be viewed as a learning process akin to any other. As such, many of today's products, such as cars, boats, and planes, which have traditional controls that predate modern user-centered design techniques may be imposing irrelevant or unrelated cognitive loads on their operators. The availability of working memory has long been identified as a critical aspect of an instructional design. Many conventional instructional procedures impose irrelevant or unrelated cognitive loads on the learner due to the fact that they were created without contemplation, or understanding, of cognitive work load. The goal of the research was to investigate the fundamental relationships between physical inputs, resulting actions, and learnability. The results showed that individuals can quickly adapt to input/output reversals across dimensions, however, individuals struggle to cope with the input/output when the dimensions are rotated due to the resulting increase in cognitive load.

Keywords: Cognitive Load Theory, Instructional Design, Product Interactions, Design Theory, Design Cognition

Download

Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.