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Abstract 

Over time, additive manufacturing (AM) has gained more and 
more adoption into series production. Software tools are 
developed to assist designers to incorporate specific design for 
additive manufacturing (DfAM) guidelines into their product 
development processes. 
In this paper, an overview of already existing DfAM functionality 
is given by a review of scientific publications and commercial 
software products. 
Additionally, interviews with members of development teams 
which design AM parts are carried out to assess specific 
workflows and problems in the current design process. 
In both investigations, the lack of an integrated and automated 
software solution emerged. Based on these results, a structure 
for an integrated design support toolchain is proposed. 
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1. Introduction 

Over time, additive manufacturing (AM) has gained more and more adoption. The 

generative process offers new potentials for product design. However, there are various 

process specific restrictions. These potentials, along with the restrictions, require special 

awareness and skills of a designer creating parts for AM. [1–4] 

This has led to various work in the field of specific design for additive manufacturing (DfAM) 

guidelines [1, 3, 5–13]. These guidelines and frameworks often consist of empirical knowledge 

and specific advises or constraints. Consequently, their guidance for designers is of high 

complexity, when detailed design support is needed. To overcome this problem, software tools 

can be used to accompany the already existing guidelines. This allows them to be applied in a 

more interactive and context-sensitive way as partly described by Goguelin et al. [14]. 

Therefore, incorporating DfAM functionality into CAD systems is done by all major software 

vendors. Nevertheless, an integrated and holistic support from CAD to manufacturing does not 

exist. 

In order to address the research questions “Which DfAM related software functionality exists?” 

and “What issues are present in the current toolchain?”, a survey of existing software 

functionality is conducted, and missing functionality is identified. Additionally, engineers 

involved in the development of components for high temperature applications using laser 

powder bed fusion (LPBF) are interviewed to assess specific workflows and problems in the 

current design process, especially those that are related to software. 

Eventually, based on the review and the interviews, a framework for an integrated design 

support toolchain is proposed. 

2. Review of available software support for DfAM 

2.1. Review of publications 

Various topics connected to software support for DfAM can be identified in the literature. 

This review focusses on software approaches for knowledge management and DfAM analyses 

of parts. Other reviews already cover the optimization of the build orientation [15], the 

optimization of the part structure and design [16], the generation of support structures [17], 

shape deviation [18], or slicing and path planning [19]. Also, in [20] a general review concerning 

the whole DfAM process is available. However, this review is not exhaustive and does not 

cover knowledge management and design analyses related to DfAM. 

2.1.1. Knowledge management 

Several research activities address the management of knowledge related to AM and 

specifically DfAM. In this context, different ontologies and knowledge bases (KBs) have been 

developed. 

The ontology presented by Yim and Rosen connects design parameters to machine 

capabilities [21]. The same group introduces an ontology-based procedure for optimizing AM 

process plans in Liu and Rosen [22]. 

Eddy et al. extend an existing framework for conventional process planning with AM. The 

knowledge system allows to find suitable manufacturing processes for products. [23] 

Dinar and Rosen develop an ontology specifically for DfAM knowledge [24]. Based on this, 

Kim et al. propose ontologies which link design to process parameters and model design rules 

[25, 26]. 

Hagedorn et al. use several ontologies to support the usage of the specific capabilities of 

AM in product development [27]. Qi et al. propose several linked ontologies for AM related 

design and processes using category theory [28]. More general ontologies considering the 

product life cycle around AM are presented by Mohd Ali et al. [29]. 
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Sanfilippo et al. create an ontology that does not rely on other AM related ontologies due to 

identified problems with them [30]. 

To deal with uncertainty during the design process, Wang et al. introduce a knowledge 

management system that models probabilistic relationships with Bayesian networks [31]. 

Han and Schaefer propose an ontology which links machine capabilities with CAD model 

parameters [32]. Winkler et al. present a similar, more practical and concrete approach using 

SysML. Properties from AM machines are used to derive restrictive design parameters. The 

parameters can be transferred to a CAD system for part analysis (see 2.1.2.3) using a CSV 

file. [33] 

In summary, there are several existing approaches covering different aspects of knowledge 

management in the field of DfAM. Applications are mostly presented as case studies where 

the knowledge is retrieved manually. There are two early approaches to link a KB with a CAD 

system for part analysis [32, 33]. However, the described linkage is either rather abstract or 

has practical limitations. 

2.1.2. DfAM design analysis 

Besides the above-described approaches for knowledge management, tools that check the 

alignment of parts with DfAM guidelines (design checkers) form another broad area of DfAM 

software support. These tools offer different stages of automation. Some require the user to 

input details regarding the part geometry [34, 35]. However, most software-based approaches 

use automated analyses to retrieve the required part parameters. 

It can be distinguished between universal approaches, mesh-based analyses and CAD-

integrated analyses. 

2.1.2.1. Universal approaches 

A larger group of rather low-level approaches exist which apply geometric operations to 

check the manufacturability of a part. 

Telea and Jalba use a voxel representation to find thin areas that are critical to manufacture 

[36]. Tedia and Williams use a different technique to identify critical areas in voxel 

representations and additionally check for critical negative structures like holes [37]. Ghiasian 

et al. also use voxel representations including methods from [36] and integrate the analysis 

into a larger framework [38]. 

Design checks based on individual layers are introduced by Nelaturi et al. [39] as well as 

Jaiswal and Rai [40]. Both additionally offer methods to automatically correct critical areas [39, 

40]. Since only layers are analysed, critical areas that do not occur in plane but in other 

directions likely cannot be identified. 

2.1.2.2. Mesh-based analysis 

More practical approaches are using polygon-meshes as input format for the analysis. 

Lu introduces a method that extracts parameters from polygon-meshes and compares them 

with machine properties. As an example, the bounding box is mentioned. Additionally, machine 

learning is used to identify manufacturable parts. [41] However, it is not clear, whether the 

bounding box is the only feature that is checked. 

Shi et al. employ the heat kernel signature of a part to identify features that are critical to 

manufacture [42]. 

Chen and Xu use an offsetting algorithm on polygonal models to identify critical features in 

parts [43]. Other approaches checking further criteria such as part size or overhang angles are 

presented in [44], [45] and as part of a larger framework including optimization of the build 

orientation in [46]. Tominski et al. connect a KB with the analysis to provide information about 
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critical parameters [47]. Building upon the approach of [44], Mayerhofer et al. likewise propose 

a framework that connects the analysis with a KB. Furthermore, the solution is integrated into 

a cloud platform. [48] In a consecutive publication, the results of the implemented framework 

are presented [49]. 

2.1.2.3. CAD-integrated analysis 

The following approaches check the design of CAD parts within a CAD environment. 

Ranjan et al. introduce a feature graph based method to assess manufacturability in which 

individual part features are identified and analysed within Siemens NX. To support this, a 

producibility index is used. However, only some analysis steps are directly performed on the 

CAD model. For the rest, other techniques are used like analysing slices from a derived mesh 

model. [50] Zhang et al. present layer based DfAM analyses as part of several AM related tools 

for Siemens NX. Further provided functionality includes the generation of support structures 

and optimization of the build orientation. They also use a producibility index as introduced in 

[50]. [51] Campana and Mele provide another approach that analyses features. It is integrated 

into the CAD environment CimatronE by 3D Systems. The toolset also includes a GUI to select 

different machines from an integrated database affecting the critical design parameters for the 

analysis. [52] Winkler et al. introduce an automated part analysis in Siemens NX. An index to 

assess manufacturability is proposed. Additionally, identified critical features can be visualised. 

[53] 

Tendencies to make use of a KB as observed for mesh-based analyses can be seen here 

as well, but to a much lesser extent. Layer or slice-based analysis methods probably have the 

same problems as described for the universal approaches (see 2.1.2.1). 

 

The review showed many approaches in scientific publications related to DfAM support 

tools in the domains of knowledge management and evaluation of specific design parameters. 

However, these approaches oftentimes mainly describe general methods and are rather 

isolated. There are only few tools that are integrated in CAD software. In those cases, there is 

no universal integration with a KB. 

2.2. Review of commercially available software functionality 

DfAM functionality is provided by several commercial software products, either directly 

integrated in CAD systems or as specialized standalone software. The latter can often be 

integrated into CAD software via plugins. Software products that can be used in different 

stages of the DfAM process have been listed before [20]. However, only few of the available 

tools are mentioned and the functionality is not analysed. 

For the analysis, software tools for which information was accessible and that have a broad 

DfAM functional scope were selected. Table 1 shows a comparison regarding functionality of 

the respective tools. The information is based on official information related to the latest and 

most advanced versions of the tools. Additionally, available software was installed, and further 

investigation was conducted (Siemens NX 1980, PTC Creo 7, Autodesk Netfabb 2021, 

Additiveworks Amphyon 2021, Simufact Additive 2021). 

The functionality has been categorized into the following relevant sections that are mostly 

aligned in order with the actual design process: CAD-integrated describes, whether the 

software is a CAD software, can be integrated into CAD software via a plugin or can only be 

used standalone. The first relevant process step is the file import. Here the variety of supported 

import formats and possible repair options are considered. The next relevant functionality is 

the ability to check the part design for compliance with DfAM guidelines. Depending on the 

tool, this can be helpful to identify potential problems already early in the design process. 

During the design phase other functionality like topology optimization (possibly with AM 

Method#_CTVL001820ce70d1fe6458185cc2229d4692c1b
Analysis#_CTVL0016380b478efc04a9abaca397875e204d5
Manufacturability#_CTVL00135045d9072cf4ef38033305d30e60de1
Knowledge-Driven#_CTVL001dc9bbbc892db4dcfa336b8df2c9df8bd
Design#_CTVL001330ba9e2664147ce874451df6a1e2d4e
Design#_CTVL001330ba9e2664147ce874451df6a1e2d4e
CAD-based#_CTVL001ad1a4ccbf77d4ac4864d4f9094542171
An#_CTVL0019cbcd9b3d1a141488f2cccff91114e4c
Evaluation#_CTVL001c35e9d4db1c24fe3954137cff7d00a26
Design#_CTVL0015fa2adcd7ec045d989cfecf50394bb2a


 

5 
 

specific considerations) can be used. Either still during the design phase within the CAD 

system or during the manufacturing preparation steps, lattice structures can be generated. For 

the manufacturing preparation, the tools often offer automatic part placement and nesting 

options. Another function for manufacturing preparation is to optimize the part orientation. 

Then, the generation of support structures can be executed and lastly often tools offer a build 

process simulation to identify problems and compensate distortions. 

Table 1: Comparison of commercial software functionality 
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CAD-integrated ● ● ◐ ◐ ◐ ◐ ◐ − − 

File import ● ● ● ● ● ● ◐ ● ● 

Design check ◐ ◐ ◐ − ◐ ◐ − ◐ − 

Topology 
optimization 

◐ ◐ ◐ ● − − − − − 

Lattice structure 
generation 

● ● ● ● ● ● − ● − 

Part placement / 
nesting 

● ● ● ● ● ● − ● ◐ 

Part orientation ● ◐ ● ● ● ● ● ● ● 

Support structure 
generation 

● ◐ ● ● ● ● ● ● ● 

Process simulation / 
compensation 

● ◐ ● ● ● ● ● − ● 

●: satisfied; ◐: partly satisfied; −: not available 

 
For many categories, functionality is broadly available in the compared products. This is not 

the case for the design check and topology optimization. For the latter this might be explained 

by its more complex functionality which is also not limited to AM. In CAD software like Siemens 

NX and PTC Creo it is included as part of the other functionalities of those software suites. For 

design checks, often only limited functionality was found not covering all relevant geometric 

features. 

In addition to the listed functionality some software offers machine and or material 

databases. This can for example change the available build volume or be used for process 

simulation. However, these databases do not connect to design check threshold values and 

are not integrated into more sophisticated concepts like digital master models. 

2.3. Interviews 

To identify interruptions, time-consuming loops and missing software functionality in current 

development processes for LPBF in high temperature applications, interviews with engineers 

from AM application, heat exchange design, business administration and development 

engineers were conducted. In total, eleven people participated. The interview focused on 

repetitive tasks, identification of waiting times due to lack of information and missing 

information communication. 
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The interviews gave several insights from the user perspective. Complex design process 

workflows and interactions are found to be very time consuming. Also, demand is raised to 

automate repetitive, sometimes rather tedious tasks like support structure creation and 

checking for sharp edges especially when switching between different software for CAD and 

buildjob preparation. AM enables functional integration which leads to significantly increased 

size and complexity of CAD models compared to parts designed for conventional 

manufacturing. This in turn results in increased review and handling efforts. A further effect is 

the demand for cost estimation early in the design process, to justify designing for AM. Further 

typical problems are different modelling strategies between company departments and 

communication of requirements between design and AM application engineers in cases where 

feature geometry is driven by functionality rather than printability. Material and machine 

dependent restrictions and possibilities, apart from general design guidelines, are not available 

to every stakeholder in the design process. Additionally, a certain level of standardization of 

design features like for conventional machining is not achieved yet. Lastly, it was observed, 

that occasionally knowledge about existing software functionality is lacking. 

In conclusion, there is a great potential for an integrated and automated software solution 

to enhance product development. Switching between different tools in iterative loops could be 

omitted and information availability throughout the company would improve. 

3. Proposal of an integrated approach 

The review showed a lack of CAD-integrated DfAM solutions that are linked to a central 

knowledge base (KB). On the other hand, the interviews show demand to reduce complexity 

in the toolchain and to increase the availability of knowledge. Therefore, we propose an 

integrated approach which connects a KB to a design support tool within a CAD environment. 

This can be seen as an application or evolvement of the framework proposed by Molcho et al. 

[68] for the AM domain. An integrated approach like this also enables a simulation-driven 

design process in AM, as was demonstrated in other fields already [69, 70]. Figure 1 shows 

the proposed structure for this integration. 

 
Figure 1: Schematic of the proposed integration structure 

The KB contains data, rules, and models for aspects like machine and process, material, 

as well as DfAM guidelines. The models are linked with data and provide internal logic rules 

(like interpolation) to deliver required information to the design software. The data can be 

stored within the KB but also be retrieved from already available sources like PLM systems or 

other repositories for digital master and associated simulation models. The exchange of this 

information is organized through a central interface that provides access for the design 
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software. Within the CAD system, a support tool (plugin) which is connected to said interface 

provides the functionalities for DfAM in combination with external tools. The vendor of the CAD 

system could as well provide a direct connection to the interface. 

The solution combines KBs with a CAD based tool like already seen for mesh-based 

analysis approaches (see 2.1.2.2). The generalized interface can be realized using a REST 

API in practice. It allows the KB to function independently of the design software. This means 

several clients with design software can easily access the unified knowledge in the central KB. 

Restrictive design parameters, e.g., can be made available for DfAM studies through such a 

tool linkage. Additionally, the KB can provide further functionality like specific information on 

DfAM guidelines that can be offered to the user through the CAD interface for example when 

visualizing identified critical areas after a design check. 

In comparison to existing solutions, an overall framework to link a KB to design tools is 

described that can easily be applied in practice and offers high flexibility through the unified 

interface. 

4. Conclusion and outlook 

In this paper, a review of functionality in publications and commercial software tools 

regarding support for DfAM has been conducted. 

Both, research presented in publications and commercial software tools often lack fully 

integration into CAD systems. This results in disruptions in the development process. 

Furthermore, the usage and integration of knowledge management systems has to be 

extended. 

Additionally, a series of interviews with different stakeholders in the development of AM 

components was conducted. Availability and communication of information regarding DfAM 

and functional features are the key factors to enhance the product development process. 

In consequence, a new framework was presented to link a knowledge base for AM with CAD-

integrated software tools using a universal interface. This enables the communication of data 

from the field as well as from digital twins to stakeholders involved in the design process and 

serves as a basis for new functionality to automatize repetitive tasks during design evaluation. 

Future work will comprise the implementation of the framework, which is currently at a 

conceptual stage, including the support tool to provide the DfAM functionality in the CAD 

system. 
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