21 INTERNATIONAL DEPENDENCY AND STRUCTURE MODELING CONFERENCE,
DSM 2019

MONTEREY, CA, USA, 23 —25 September, 2019

The Structure of Agile Development
Under Scaled Planning and Coordination

Siddharth Bajpai !, Steven D. Eppinger !, Nitin R. Joglekar 2

! Massachusetts Institute of Technology, Cambridge, MA, USA
2 Boston University, Boston, MA, USA

Abstract: Agile and Scaled Agile Framework (SAFe) methodologies are
increasingly being deployed, both for software development and also by teams in
broader work settings. This is a proof-of-concept study to develop a DSM for a SAFe
development environment. Key takeaways from this study are: (i) Agile and SAFe
DSMs are characterized by a unique set of nested information dependencies that are
absent in waterfall development; (ii) these dependencies are not readily evident in the
conventional and layered rendering of SAFe process documentation. We discuss the
organizational and analytical process improvement opportunities available based on
such DSM analysis and conclude by identifying possibilities for follow-on research.

Keywords: Agile, SAFe, Software Development Process, DSM

1 Agile Development Dependencies

Agile development was envisioned to create expedient processes for incorporating
dynamic customer input into iterative and incremental software development (Agile
Manifesto, 2001). In practice, various implementations of agile processes set up adaptive
planning and evolutionary development while encouraging flexible response through rapid
product releases to gather frequent customer feedback on desirable product features. An
agile team then creates, delivers and updates a prioritized list of features needed by
customers. Implementations incorporate concepts such as sprint and scrum. A sprint is a
repeated design-code-test-release software development cycle lasting from one week to
one month. The term scrum has been drawn from rugby scrummages, because development
effort involves a cross-functional team. Scrum teams huddle daily to assign work to
individual team members from a prioritized list of features and other tasks known as the
backlog (Schwaber, 2009). Teams work to reduce this backlog through sprint cycles, while
aiming to release working software, at the completion of each sprint.

In part, the agile revolution in the software industry was a reaction to the (sometimes)
excessive planning and control typical of large-scale waterfall software development
methods. However, scaling agile methods from a single team to multiple, interacting teams,
and from small software applications to larger systems, requires implementation of some
degree of planning and coordination. Leffingwell (2008) introduced the Scaled Agile
Framework (SAFe) to organize such planning and coordination mechanisms. Agile and
SAFe methodologies are now being used, beyond software development, by hardware
product developers and by teams in broader work settings (Cooper, 2016; McKinsey
Survey, 2017).

DSM 2019 25

Part I: Managing Organizations

Structured as a series of periodic sprints, agile development work is fundamentally iterative
in nature. The informal organization of sprint work creates activity dependencies within
each sprint team. For instance, daily scrum meetings during a sprint cycle require updates
from team members on the status of their assigned work along with emergent issues that
might have come up during the previous day’s work. In scaled agile, coordination across
teams also involves interface definition across sub-systems and coordinated backlog
prioritization required to deliver coordinated work results (Thompson, 2019).

This paper seeks to demonstrate how DSM can be applied to agile software development
processes and specifically how a SAFe process can be represented using DSM. We also
consider how DSM analysis can help to improve an existing agile process. Finally, we ask
what we can learn from SAFe for improving other (non-software) projects.

2 Modeling Software Development Processes

Design structure matrix is a network modeling tool for depicting the elements of a system
and their interactions. DSM 1is widely used to represent the structure of engineering
processes and of complex technical systems (Eppinger and Browning, 2012). The DSM
consists of a (N x N) square matrix, mapping the interactions among the set of N system
elements. In the current study, we utilize a process architecture DSM in which the elements
are the activities of the process and the interactions are the flows of work or information
between the activities. The process architecture DSM model therefore describes the way
activities work together to deliver the process results. This type of DSM analysis highlights
important patterns of work flow and their implications for process characteristics such as
iterative cycles and completion time.

Planning

Devel-
opment

. Launch

Figure 1. Stylized DSM of a Waterfall Software Ddevelopment Process
(Source: Srinivasan et al., 2019)

The DSM in Figure 1 captures — at an abstract level — a stylized process for conventional
(a.k.a. waterfall) software development. This DSM representation can be enriched in many
ways, for example, by characterizing interaction types using different marks, and by using
various labels or shading to more completely describe the process. Process activities are
generally sequenced to represent the overall process flow. Grouped processes may
represent coupled iterations or the boundaries of a phase or stage of the process. The DSM

26 DSM 2019

S. Bajpai, S. D. Eppinger, N. R. Joglekar

graphic is intended to convey to process owners the relevant activity groups and their
interactions at a level of abstraction where it can be used for project planning, process
control, and/or process improvement. For a detailed example of mapping such software
development, and allied coordination and problem solving tradeoffs, see Gomes and
Joglekar (2008).

Mapping of agile tasks into a DSM model is an emergent research theme. Srinivasan et al.
(2019) examine the issues associated with modeling a special type of agile operation,
termed DevOps, which integrates agile development activties with downstream operations
of released software. Such a process is particularly relevant in the Product-Service System
(PSS) development context.

We present a stylized DSM diagram, shown in Figure 2, depicting the work of a single
agile team engaged in repeated sprints. This DSM captures — at an abstract level— the
process of product planning following by an iterative sprint block within which scrum
activities include daily meetings, development, and testing. Software is released at the end
of the sprint and customer feedback is delivered for ongoing planning of future releases.

Product Planning
Manning teeations

Sprint Sprint
Planning Ierations

Figure 2. Stylized DSM of Agile Software Development for a Single Team

Modern software development following an agile approach, even with moderate
complexity, involves multiple sprint teams working in parallel to address a portfolio of
customer needs. Alternative frameworks (e.g., SAFe, SOS — scrum of scrums, DAD —
disciplined agile delivery and Nexus) may be used for coordination across multiple teams.
Ebert and Paasivaara (2017) review five frameworks and offer a comparison matrix.

SAFe is arguably the most prevalent framework for coordination of complex software
development. It calls for scaling the agile development process with multiple layers (e.g.,
portfolio, program, and team layers), as shown in Figure 3. At the portfolio level, work is
described in terms of themes and epics (a.k.a. major milestones). At the program level,
work is planned as a sequence of Product Increments (PIs) developed by agile release trains
(ARTs). Pls are time-boxes during which a specified set of product improvements are
released to achieve an expected incremental value to the product. An ART is a self-

DSM 2019 27

Part I: Managing Organizations

organizing, virtual organization comprised of 5 to 12 teams that plans, commits, and
executes these Pls.

Another key construct at the SAFe program level is the “Innovation & Planning” sprint
(I&P), which serves multiple functions including preparing for the next PI Planning event,
local innovation, and Inspect and Adapt workshops where recently completed work is
showcased to business teams. At the individual team level of SAFe, work is characterized
by sprints and scrums. The aim behind Figure 3 is to depict the layered structure of SAFe.

Select Configuration

SAFe® (or [ean Enterpnses

((Essential 527) [Large Solution sa7s | Portiolio saF« | (Full sar-

PORTFOLIO

Eme rprise Guve rament I Eplc Emm"“ —j
Owners Architect
Backlog
Matm:s i— Sirategic Portfolio Y
1= Pk & Lo Bdve KPis

Lean Portfolio

Management
(]
£na =
Shared Guardrails Value Streams
Sorvices —— | Coordination
I 80 - Continuous Delivery Pipeline o PROGRAM
o) Lne R " p
CoP 2 . B‘;siness = “AGILE RELEASE TRAIN | Customer &l
eners : -
- T L T o DevOps
Milostones System Praduct B Conlinuous Contiuous Continuous Reluase + Cuture 72\ DevOpsand
Arch/Eng Mgmt [Exploration integration Deployment on Demand « Autontion —*—_ Release on
2 i P1 Objectives Lean Flow i Demand
] + Measurement
Roadmap RTE Sysiem aos, = * Recovery
ml:l‘r u A
o0 Em rchitectural
Vision — mr 'E w-v
-_, -~ —
@ z
& &
. ots S - TEAM
Sua. V] +Exocute = E i o 1 B | o g
System Doy Toam Product [, -Roview == £ D O 108 Bl E LBR8 08 | £ =
Team . QOwner Scrum *Retro E m m g - H - ;ea: ‘Md|
I — echnica
O % sam B foinn|n le fo Bkl - Agility
(S FW Master W e e e gt LA L L B8 Builtdn Quality
LeanUX = HW ? wns & £ g

Agile Teams Kanban sackrag

) Lefioguos etal &

Lean-Agila Leadership

Scaled Agie, Inc

4.6

Figure 3: A Portfolio SAFe Development Process (Source: Scaled Agile, 2019)

Since the goal of this study is to examine SAFe using the lens of DSM analysis, we lay out
the SAFe process as a stylized DSM in Figure 4. This process begins with a block of
Portfolio Planning activities, followed by a block of Release Train Planning, followed by
a block of Innovation of Planning (1&P) activities, and further by another set of blocks for
Sprint Planning, Scrum, Development, Testing, and Release activities. It is worth noting
that in this depiction, there are typically several teams running sprints concurrently, but
only one instance is shown here for ease of depiction. It is also normal in the SAFe
environment to model the ongoing activities (termed as DevOps in Figure 3). We depict
ongoing operations (Ops) as a separate block at the bottom of this stylized DSM. Also
represented are several possible sets of dependencies across activities that are organied
either sequentiually, and/or within concurrent activity blocks.. In Figure 4, we highlight
these blocks and feedback dependencies across these blocks. Moreover, it is also possible,

indeed quite normal, for these activity blocks to be run at different speeds. (Srinivasan et
al., 2019)

28

DSM 2019

S. Bajpai, S. D. Eppinger, N. R. Joglekar

Portfolio Planning ﬁ

Release Train Planning

Innovation & Planning

JY

Sprint Planning

Scrum ﬁ

Development

Test

Release

Ops

Figure 4. Stylized DSM of a SAFe Software Development Process

Ebert and Paasivaara (2017) have considered how SAFe can improve visibility and
alignment across the organization. They point out that (p. 102), while software engineering
literature recognizes the need to manage such complexity, issues such as dependencies and
their optimal coordination have not been well addressed. We have designed a case based
field study to address this gap in the literature. In this study, we map the overall SAFe
process and individal sprints using DSM. We aim to assess whether analysis of such maps
can provide agile teams with unique insights to improve teamwork and SAFe coordination
decisions.

3 Field Study

We studied the SAFe process for development and support of the Swisscom Big Data
Platform (SBD for short). This is a data storage and computation platform which is used
by several internal software applications and technology or business teams to build data
and analytics solutions. SBD’s agile development process is part of the Data Lake Agile
Release Train, within Swisscom’s Data, Analytics and AT (DNA for short) Large Solution.

3.1 Swisscom Big Data as an Internal Technology Product-Platform

Swisscom AG is a leading telecommunications provider in Switzerland. Swisscom holds a
market share of 59% for mobile, 68% for broadband internet, and 35% for TV
telecommunication in its domestic residential and commercial markets. Swisscom is
known for its premium quality offerings, which command a premium price.

Swisscom’s Data Lake system is a large, centralized, unstructured data repository for all
of Swisscom’s data. Swisscom Big Data Platform (SBD) serves as technical infrastructure
used by several other engineering teams within Swisscom to build data visualization,
analytics, and Al solutions for internal customers. The SBD platform is specialized for
ingestion of real-time data streams, and provides a source-agnostic way for data to be
passed into the system and stored long-term in an unstructured form. These data are made
accessible through an application that makes it structured and queryable. Analytics teams
at Swisscom interested in accessing any data available in SBD develop and set up their
own pipeline using the tools available through the SBD stack. SBD then maintains this
pipeline over time, while evolving the system to make it capable to serve the anticipated
future business needs.

DSM 2019 29

Part I: Managing Organizations

3.2 Data Collection and DSM Modeling

We conducted the field study through multiple visits to Swisscom in Bern. Data collection
consisted of 12 interviews with the SBD team, generally lasting 40 to 60 minutes each.
Subjects included product owners, development team managers, software architects, and
senior leadership including IT Architect, Vice President of Engineering for the DNA Large
Solution, and Principal Product Owner for Swisscom Big Data (SBD). Interviews covered
SBD’s adoption of the SAFe development methodology, current engineering and
operational processes, and key technical and management pain points in these processes.
These data were used to construct the DSM which was then analyzed for insights. Initially
identified relationships were validated through a second round of discussions with the
leadership team. Using the notation established in Srinivasan et al., (2019), we present a
summary of our results using the DSM interface labeling convention shown in terms of
Sequential, Strongly Coupled, Weakly Coupled, and Feedback. In this DSM, shown in
Figure 5, we also identify the different periods over which these activities take place:
Ongoing, PI-ly and Sprintly, along the top of this DSM.

4 Description of SAFe DSM

We have organized this section in terms of a description of concurrent activity blocks,
followed by a discussion of nested iterations across these blocks within Figure 5. These
concurrent blocks were initially identified by examining a preliminary DSM. The block
membership and boundaries were then reviewed by the Swisscom team. Suitable
adjustments were made to arrive at the final DSM shown in Figure 5.

4.1 Concurrent Activity Blocks

An ongoing set of activities occur in the Large Solution Planning (LSP) block involving
activities such as #1 (Requirement Generation), #2 (Opportunity Assessment) and #10
(Requirement Engineering).

The first seven activities of LSP are deemed strategic and result in the creation of epics
(i.e., setting up overall time line) along with the organization of work among ARTs.
Activities in this block also provide an assessment of the impact of the architecture and
prioritization at the solution level. The LSP block overlaps with the Agile Release Train
Planning (ARTP) block. ARTP involves activities such as #11 (Drilldown on Program
Capabilities), #12 (Business Value Estimation) and #13 (Breakdown of Capabilities into
Features). Armed with a feature list generated (from activity #13) upon conclusion of
ARTP, each sprint team in the ART (including those comprising the SBD team) can begin
working on a set of preparatory activities leading up to the next Program Increment (PI)
planning session, conducted during the upstream I&P sprint of the previous program
increment, activities #14 (Feature Prioritization) to #18 (Effort Estimation). Upstream 1&P
sets up the activity sequence that is followed by four activities in a block called PI & Sprint
Planning (PSP Block). Both Upstream I&P and PSP blocks occur at the frequency of once
per PL.

30 DSM 2019

S. Bajpai, S. D. Eppinger, N. R. Joglekar

xomnnwmu_H_ pajdnon >_v_wm>>_H_ pajdnon >_m:o‘=w.

_m_Emsumm_H_

Buocbuo | Arid

13 SUONEo0I Ofoiod UeoT

d'8l weansumoq . 87| ongoedsoney 5943 10 UoREWS3 1083w MEA SSoUSTE

It S0d 01 Joeqpesd

o Ueid Ui ol|

[Sms A TR S 16

7] -d38l TojeIedeld SomoN 1

ey Wesasumod Tsdousion 18Py § 155050]) Sowag

73 SoNA/SII0IS 1ORONTS RRUSPT

X2 UOREoy1Ia/, UORONpOId

71 Touanpod Ol 35EERY

l6¢ | JIGBIEAY SInoNASELU|

3 SWa)sAS Pa1osuuoy M UOREUIPIO0D 6SEsley

m sbng BUIXIOH

loe | $100Ae]d BUISN S)aly PUE UopelBaju] Jo buisa |

ce| BuBeiS Uo Buse L 50uBIde00y 15N

[ve | BUS6 1 GOUBWIoNE

. 66| o suuds | (wewmomugen umer sweeoy e

o IZe| - suonessy |4 BuSeI A

dsd <] UONEUeWN IS U BUHGTUON BUREa1)

- = 0 SebueyO oMoy

621 TONEaLIa, SoE N

sz | usweldwiualidoAeq

- 122] suonedyipoy ubiseq

d'gl weansdn loz | 1055003 10 J001d/BUdAI0Id

= P E bS50 (SU0dpU3 [av) Soesal

X vz TiaIsea 3 pue UBiseq UOMNOS

- = = . X ez | Buuued-oy undg|

77 S551655%] 10 UOE00TY SAEIISL

" u . . o o (12| Buuueg D UBid 10HdS 1d

. . . 0z| uudsgid TOREUpIo0s 5PN

[[l == dLavy m pieog Weboid Jo uonesedald

. . " . ot Uonewns3 o3

.= . . 0 21| 14 snoneiq SISAleUY Sisiy pue Aouspuadeq

. . " or - SSI01S 01Ul SaINTEe] JO TIGWRUIY

.. . 51| d91 weansdn BoIoeg |d 0} SeINiea JO UoRoaIes

» suoijesa}| Sujuuelq 03 Sujuueld-aid |d ﬂlvi dsi S {arSm: P oG Zong SIrieod
SUOI3RID)| SS0J98 3 el SoImes] Ojul SanIqedeD Welbold umoq Jealg

sapuapuadaq dg| 2] SoNIqEdeD 0 UONEWST SnEA Ssausng

- 7 [(dLev) Buiuerd SeNIGR0e0 WeiBoid of TAGPING

3 0, [*d el UoneaI 5505 bueaubus siUBWEIboY

suonesa| Suiuueld-aud ases|ay a|by

. POy . . 5 Uon0919S SINTOBYOI/SISAEUY [EIMTORNIONY

. . .] B /ouuN3 VS/Odd O PPY
Y P 7 5943 Laiv Jo uopeaid
. . . 9 /or] (UOINIOS 96727) VNG 18 UoReZiiond

um\%uw&“\“ﬁ%& suonesay| Suluuejd-aig 3 B - x| | (ds1) Juawssassy joedw| [enjosyyoly
14V %3 uonnjos agen x (7| Buuueid-eig PojEaI) S0103 Lo 9b1e]

Y . R x [€] uonnjog ebue JBUUN JBUMO JONPOId S101 PPY
= =] X = m|m .] z JUBWSSassy AunpoddO/enien

LI I - X X X b
ov]8v].v|ov]sv]vv]ev[ev[iv]ov]ee[se [ze[oeseve [ee[ee [re]oe[6z]sz] Le[oe[sz vz ez [ee] a0zt oL 41 [or [st v [er [er i for] 6 [|2 o] s [v [& abe)g 24vS Aoy
_ A-1d _ Buobup _ Kouanbaig

Figure 5. DSM of the Observed SAFe Development Process

31

DSM 2019

Part I: Managing Organizations

Upon conclusion of the PSP, each sprint team can begin Dev/Test iterations in the PI
Sprints stage of activities. These iterations involve concurrent Development, Test and
Staging (DTS Block) represented in activities #23 to #37, followed by Release (REL
Block) represented in activities #37 to #42. These blocks (i.e. DTS and REL) run on the
Sprintly time scale. It is not necessary for the full set of activities in these two blocks to
take place each sprint, and sometimes iterations can happen within sprints or across sprints.
However, all iterations of these activities conclude within Sprints 1 through 5 of the
Program Increment (PI), and it is occasionally true that all activities pertaining to a single
feature are completed within a sprint.

Release block is followed by Downstream I&P activities (#43 to #48) which round out the
current PI, including activities such as #44 (PI Metrics Preparation) and #45 (Selection of
Features for Innovation Sprint). These activities occur concurrently during the final Sprint
of the PI and thus couple with some activities in the DTS block. The Downstream &P set
of activities occur Pl-ly, and are concurrent with the Upstream &P block for the next PI
iteration. Each epic concludes when released work becomes operating software features.
Based on customer input to business operations, assessment of the business value impact
of the epic and portfolio allocations (activity #47 to #49) can be carried out within the
business operations (BO) Block.

4.2 Nested Loops across Concurrent Blocks

Perhaps the most striking feature of the SAFe process we observed is the prevalence of
nested loops across the concurrent activity blocks. While there certainly is a nominal flow
of work from high-level planning through release, there are multiple paths for planned
feedback to update plans at each development pace — both within sprints and Pls, and for
planning subsequent ones. Figure 6 summarizes these nested, planned iterations.

Lsp Ongoing
ARTP b Py
Upstream I&P “ REIEESEIV""']
oo b Sprintly i
1
DTS b !
]
REL b i
Downstream |&P h
BO b

Figure 6. Nested Structure of SAFe Dependencies

5 Discussion
5.1 Organizational Opportunities for Improving Agile and SAFe Processes

The SAFe DSM provides a map for each activity in terms of where input information
comes from, which activities use the output, and which other activities create tight

32 DSM 2019

S. Bajpai, S. D. Eppinger, N. R. Joglekar

coupling. When laid out in a two-dimensional matrix, such mapping may be easy to depict,
but its usefulness in terms of organization of groups of activities, and assigning roles, may
not be trivial. For example, in Figure 3, which provides a layered view of the SAFe process
as a whole, these dependencies have been suppressed. In the absence of a DSM map, it will
be virtually impossible, based on Figure 3, for the planners to tell exactly where the points
of communication may lie. It will also be difficult to ascertain how frequently these
communications take place and which channels of information exchanges face
organizational mismatches (because these exchanges take place at different speeds).

Even though the blocks with tight coupling are easy to observe in a two-dimensional map,
it is not clear if the teams within any block would recognize this structure and organize
around it, because there is no comparable guidance either in the SAFe or within
Agile/Scrum training literature to address these issues. The extent of guidance in this
literature is limited to recognizing that dependencies exist, and the scrum masters
(responsible for the ARTs) and architects (who coordinate the SAFe) should address them.
Arguably, some scrum masters and architects may create resource buffers, and foster
additional mismatches, around their own team in the face of informational uncertainty, and
thereby compound the coordination problems.

It ought to possible to set up an intervention study by constructing such maps, and then use
these maps to inform architects and scrum masters regarding the desirable structures for
their blocks, along with plans for formalizing the needed communication practices. Such a
study can document the organizational and performance consequences in matched settings:
one sprint team with and the other without an intervention.

5.2 Analytical Opportunities for Improving Agile and SAFe Processes

In theory, it is also possible to improve the DSM structure through analytics (Eppinger and
Browning, 2012). For instance, in order to improve the within-team information exchanges,
one may advocate the use of sequencing algorithms within each block (in particular for
LSP and ARTP because of their strategic importance, and also for the Development, Test
and Staging (DTS) block because it is exercised repeatedly. This would amount to a local
optimization within key blocks.

Global optimization, based on analytical rationalization of the nested dependency structure
shown in Figure 6, which operates at multiple speeds, is a difficult problem to solve. While
there has been some research on optimizing a DSM with a single periodic update (Yassine
etal., 2003), the multi-speed nested problem is yet to be studied. We identify such analytics
as opportunities for follow-on research.

5.3 Generalizability

A major limitation of the current study is the need to generalize the lessons from a single
case study into a broadly applicable methodology, both for mapping the SAFe DSM and
for drawing inferences. In a related study, Srinivasan et al. (2019) have mapped and
analyzed a DevOps DSM. Their DSM has major structural differences when compared
with Figure 4, because their ART has integrated ops activities. Our cuurent study may be
a maiden attempt at mapping a SAFe DSM. Even a cursrory comparison of Figures 4 and
5 shows that Swisscom has a unique way of settting up some of their blocks (for instance
the I&P blocks occur both upstream and downstream). Other SAFe implementations may

DSM 2019 33

Part I: Managing Organizations

not follow this pattern. The generalizabity of such a DSM structure in other scaled agile
settings, such as large-scale scrum (LeSS), disciplined agile delivery (DAD), and Nexus,
is yet to be tested. A related issue is what can be learnt from SAFe DSMs for improving
the coordination of other (non-software) projects. We identify such assessments as fruitful
avenues for follow-on work.

6 Conclusion

This is a proof-of-concept paper. The goal for the underlying research was to explore if
DSM mapping can be used to illustrate the dependency structures for agile and SAFe
development environments. Key takeaways from this case study, and allied data analysis
are: (1) agile processes are characterized by a unique set of nested information dependencies
that are absent in waterfall development; (ii) these dependencies are not readily evident in
the conventional and layered rendering of the activities in a SAFe process documentation.
We discuss the organizational and analytical process improvement opportunities available
based on such a DSM analysis and conclude by identifying opportunities for follow on
research.

References

Agile Manifesto, 2001. Manifesto for Agile Software Development. https://agilemanifesto.org/

Cooper, R.G., 2016. Agile—Stage-Gate Hybrids: The Next Stage for Product Development Blending
Agile and Stage-Gate Methods Can Provide Flexibility, Speed, and Improved
Communication in New-Product Development. Research-Technology Management, 59(1),
21-29.

Ebert, C., Paasivaara, M., 2017. Scaling Agile. I[EEFE Software, 34(6), 98-103.

Eppinger, S.D., Browning, T.R., 2012. Design Structure Matrix Methods and Applications. MIT
Press.

Gomes, P.J., Joglekar, N.R., 2008. Linking Modularity with Problem Solving and Coordination
Efforts. Managerial and Decision Economics, 29(5), 443-457.

Leffingwell, D., 2007. Scaling Software Agility: Best Practices for Large SAFe Enterprises.
Addison-Wesley. ISBN 978-0321458193.

McKinsey Survey, 2017. How to Create an Agile Organization.
https://www.mckinsey.com/business-functions/organization/our-insights/how-to-create-
an-agile-organization

Schwaber, K., 2009.Agile Project Management with Scrum. O'Reilly Media,
Inc. ISBN 9780735637900.

Scaled Agile, 2019. https://www.scaledagileframework.com

Srinivasan, R., Eppinger, S.D., Joglekar N.R., 2019. The Structure of DevOps in Product-Service
System Development. Proceedings of the International Conference on Engineering Design
(ICED19), Delft, The Netherlands.

Thompson, K.W., 2019. Solutions for Agile Governance in the Enterprise (Sage). Sophont Press.

Yassine, A., Joglekar, N., Braha, D., Eppinger, S., Whitney, D., 2003. Information Hiding in Product
Development: The Design Churn Effect. Research in Engineering Design, 14(3), 145-161.

Contact: Steven D. Eppinger, Massachusetts Institute of Technology, eppinger@mit.edu.

34 DSM 2019

