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Abstract: The theory of complex systems, which has been applied successfully in 

evolutionary biology, is gaining popularity for the modeling and analysis of 

complex product development (PD) systems. Modeling complex PD systems is 

essential to understand how system elements and their dependencies impact system 

properties in several aspects such as performance, convergence, and evolution. In 

this paper we use the NK and NKC models to simulate and analyze complex PD 

systems, which are represented by the design structure matrix (DSM). The main 

objective is to assess whether these models can be useful in analyzing DSMs; 

particularly, assessing the effect of architecture on performance and evolution.  

Keywords: NK Model, Design Structure Matrix (DSM), Product Development, 

Complex Systems, Performance Evaluation 

1 Introduction 

The theory of complex systems, which has been applied successfully in evolutionary 

biology (to study the dynamics and evolution of biological systems), is gaining popularity 

in product development (PD) to model and analyze man-made systems (e.g., Frenken and 

Mendritzki, 2012; Oyama et al., 2015). In fact, the biological domain is considered an 

analogy to complex PD systems where the genes in biological organisms correspond to 

the components in complex PD systems and genes in biological organisms depend on 

each other in a similar way to the components in man-made systems. Complexity of 

biological organisms is reflected by the dependencies between the genes; that is, when 

one gene is mutated, it may not just affect its own functionality but also affects the 

functionality of all other interdependent genes (Frenken, 2006). The main difference 

between the two systems is that man-made systems are designed by designers who are 

responsible for making the design decisions whereas biological systems depend on 

natural selection (Beesemyer et al., 2011). 

This analogy between biological organisms and man- made complex systems is valid in 

terms of product evolution as well. Products evolve throughout the generations due to the 

continuous changes in the interdependent components’ design, which increases the 

systems’ performance. It has been argued that the way these interdependencies are 

distributed between the system’s components (i.e. product architecture) affects the 

product’s performance and evolvability (Rivkin and Siggelkow, 2007; Luo, 2015). In this 

context, modeling complex PD systems is essential to understand how the system 

elements and their dependencies impact system properties in several aspects such as 

performance, cost, improvement, convergence, and evolution. 

According to the NK model, a product system can be defined as a complex system 

consisting of a set of N components (or modules), each of which is intended to deliver a 

specific functionality (Kauffman, 1993). Hence, each component delivers a specific 

function and, in turn, contributes some value to the overall product system. This value is 
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referred to by the performance or the fitness value of the component. This component’s 

performance depends on its own (design) decision and the decisions of one or more other 

components (depending on the system architecture). The decisions made at the 

component level are binary. That is, each component is available in two variants, which 

represent two alternative designs. A complete product contains exactly one variant of 

each component. A vector of length N whose ith element represents a variant of the ith 

component is called a design configuration. Standard practice in the NK literature 

denotes the variants by 0 and 1, which allows a configuration to be represented by a 

binary string (e.g., 0010 for a vector of length N = 4). The N-dimensional possibility 

space is called the design space and a specific component configuration defines a product 

design. Moreover, a complete product has a corresponding product (system) fitness that 

depends on the fitness values of its components. The actual resemblance of this product 

fitness is a measure of the performance of the system as a whole. For example, if the 

system is a team of employees, then the fitness of the system resembles the problem-

solving effectiveness of this team (Solow et al., 2000). 

In this paper we introduce an NK-based simulation model to analyze the design structure 

matrix (DSM) to assess the effect of the product architecture on product performance. In 

the next section, we introduce the basics of the NK model, and then we test its behavior 

based on varying N and K values. In Section 3, we introduce the notion of NK model 

using sub-blocks. In Section 4, we introduce the NKC model and run tests to compare its 

performance to the standard NK model. We test the various NK models on a set of 

different systems architectures in Section 5. We conclude the paper in Section 6.  

2 NK Model Fundamentals 

In the NK model we consider a system of N components, where each component depends 

on K other components (Kauffman, 1993). The NK Model is a mathematical 

representation of these dependencies, i.e. it assigns to each component a mathematical 

measure that represents the component’s fitness value, taking into account the 

dependencies between components, as will be explained later in this section. To apply the 

NK model to the N size system, a N size Design Structure Matrix (DSM) is used to 

model and represent the system and its components’ dependencies, as illustrated in 

Figure 1.  

Suppose we have 3 components in a system, where the performance of each component 

depends on its own (design) decision and on the decisions of other components. In this 

case, N=3 and K=1. 

 

 

 

  

Figure 1: DSM Representation of a Complex System 

Figure 1 represents the scenario where each off-diagonal mark “X” represents a 

dependency between two components (Yassine and Braha, 2003). For example, the DSM 

 1 2 3 

1  X  

2   X 

3 X   
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(assuming that row i depends on column j) shows that the performance of component 1 

depends on its own (design) decision and the decisions of component 2. Similarly, 

component 2 depends on component 3, and component 3 depends on component 1. 

The NK model starts by randomly assigning to each of the N components discrete 

random states (either 0 or 1) and corresponding random fitness values sampled from a 

uniform distribution ranging between 0 and 1. The fitness of the system, call it F1, is the 

average of the fitness values of the N components and can be calculated according to the 

formula in Equation (1). 

F1=⅀fi/N    (1)  

Where fi is the fitness value of component i. In our case, shown in Figure 1, i ranges 

between 1 and 3 (1≤i≤3) since there are 3 components in the system.  

Then, one of the N components is randomly chosen to change its state and its 

corresponding fitness value. Furthermore, we change the fitness values of all the 

components that depend on this chosen component. For example, if we choose to change 

the state of component i (1≤i≤N), then if its state is 0 it becomes 1 and vice-versa. Then, 

we change the fitness value of component i as well as the fitness values of all the 

components j (1≤j≤N) that depend on component i. 

Finally, the average fitness is recalculated, to obtain a new average fitness, call it F2. If F2 

is greater than F1, then we repeat the above process starting with the new obtained string 

of states and their corresponding fitness values. If F2 is less than F1, then we repeat the 

above process after choosing a component other than one previously chosen. This 

simulation process continues until a maximum average fitness is reached. Note that if a 

string of states is revisited, then their corresponding fitness values should be retained.  

2.1 NK Model Simulation 

For the DSM in Figure 1, the NK model works as follows. After randomly initializing the 

states and the fitness values of these components, we obtain initial states 110 and their 

corresponding fitness values 0.85, 0.57 and 0.63, resulting in an initial average fitness 

F1=0.68 (Refer to the 7th row in Table 1). Then, the third component is randomly chosen 

so its state changes from 0 to 1 and its corresponding fitness value as well as that of 

component 2 change to 0.02 and 0.55 respectively, resulting in the 8th row in Table 1. 

Table 1: Enumeration of the fitness values of the DSM in Figure 1 

 States f1 f2 f3 F 

1 000 0.31 0.72 0.37 0.47 

2 001 0.31 0.42 0.51 0.41 

3 010 0.38 0.57 0.37 0.44 

4 011 0.38 0.55 0.51 0.48 

5 100 0.15 0.72 0.63 0.5 

6 101 0.15 0.42 0.02 0.2 

7 110 0.85 0.57 0.63 0.68 

8 111 0.85 0.55 0.02 0.47 
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This iteration results in the new average fitness F2=0.47<0.68=F1. For this, we return to 

the initial ‘110’ string states and randomly choose a new component, i.e. any component 

other than the 3rd component. This process is repeated until a maximum average fitness 

Fmax is reached. Table 1 enumerates the total 8 cases of this DSM. It is worth noting that 

the fitness values are almost always between 0.5 and 0.7 since we are sampling from a 

Uniform distribution between 0 and 1. 

2.2 Effect of Varying K on the fitness values in the NK Model 

To study the effect of K on the evolution of the fitness values, we ran the NK model on 

three DSMs of size 5, but with different number of dependencies K: a) K=0, b) 0<K<N-1 

and c) K=N-1. The variation of the fitness values in these 3 cases is shown in Figure 2. 

Figure 2: Evolution of the Fitness for Various Values of K (N=5) 

Figure 2a represents the case where K=0, i.e. the system has no interactions among its 

components. In this case, there will only be one state (either 0 or 1) for each element that 

is responsible for making the highest fitness contribution to the system. This maximum 

fitness, i.e. the only global optimum, is represented by the highest single peak in Figure 

2a. All other sub optimal fitness values will eventually reach the global optimum after 

having passed through all their neighboring states, which obviously have lower fitness 

than the global optimum.   

We notice from Figure 2b that as the number of dependencies increases to take any value 

between 0 and N-1 (K=2 in our case), the number of fluctuations increases, and the graph 

becomes multi-peaked. In this case, each element depends on multiple other elements in 

the system, causing the number of the local optima to increase significantly and thus 

making it harder for each element to reach an optimum. 

In the third case, as K reaches it maximum value, i.e. K=N-1 (K=4 in our case), the DSM 

become a completely rugged landscape where each element depends on all other 

elements in the system. This property causes the search process for the maximum fitness 

to be very difficult, as represented by the huge increase in the peaks of the graph, in 

Figure 2c.  

2.3 Effect of N and K on the NK Model 

To study the effect of the number of elements N and number of dependencies K on the 

system’s behavior, the NK model is applied on several DSMs having different N and K. 

The corresponding changes in the fitness values and number of iterations are observed 

and shown in Figure 3. 

Observation 1: As shown in Figure 3, for a fixed N (the number of components) and as 

K (the number of dependencies) increases, both the fitness and the number of iterations 

(a) 

K=0 (b) 0<K<N-1 (c)  K=N-1 
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are not significantly affected. However, both the fitness and the number of iterations 

increase with N for a fixed K.  

Figure 3: Effect of N and K on the DSM’S behavior 

3 NK Model using Sub-blocks 

The NK model is also applied in this section; however, the DSM is divided into sub-

blocks prior to simulation. In this case, K is divided into two components; Ki and Ko, 

where Ki+Ko=K, Ki is defined as the number of dependencies within the same sub-block, 

and Ko as the number of dependencies outside the sub-block. For example, consider 

Figure 4b, where a DSM of size 12 and K=2 (Ki =1 and Ko=1), is divided into three sub-

blocks of four components each. 

Both Figures 4a and 4b have the same number of components N and dependencies K; 

however, the main difference is the way these dependencies are distributed. In Figure 4a, 

interactions between components are randomly distributed, however, in Figure 4b, they 

are classified according to the number of dependencies within and outside each sub-

block, as described above. For example, the first DSM row has 2 marks (i.e. K=2). One 

of these marks is within the first block in the grey part of the row (since Ki =1) and the 

other mark is within the white part of the first row (since Ko=1). The rest of the marks are 

similarly allocated for each row in the DSM. 

  

(a) 12 sized Random DSM (b) 12 sized DSM with sub-blocks 

Figure 4: Sample of 12 sized DSMs having different dependencies’ distribution 
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3.1 Effect of N and K on Random NK model and NK model with Sub-blocks  

To study the behavior of the DSM with sub-blocks and test how it differs from the 

random DSM, the NK model is tested for 200 runs on both random and sub-blocks 

DSMs. This test is applied on DSMs with different number of components (N=6, 12 and 

15) and dependencies (K=2, 3 and 4) to compare the maximum average fitness values 

and the average number of iterations executed by different cases. Also, note that two 

cases have been considered for K=3; either Kin =1 and Kout =2 or Kin=2 and Kout=1. 

 

Observation 2: As shown in Figure 5, both random and sub-blocks DSMs behave 

similarly with an increase in K. We can conclude that the effect of distributing the 

dependencies between the components using sub-blocks is almost negligible on the 

system’s fitness and number of iterations. 

3.2 NK Models with Different Numbers of Sub-blocks  

Each DSM, with a certain number of components N, can be divided into different number 

of sub-blocks. For example, the 12 sized DSM, shown in Figure 4b, is divided into three 

sub-blocks of 4 components each; however, it can be divided into 2 sub-blocks of 6 

components each, or into 4 sub-blocks of 3 components each, etc. Accordingly, we tested 

the NK model on a 12 sized DSM, with K=4, divided into different number of sub-blocks 

to study the effect on the fitness values and the number of iterations. We observed that 

changing the number of sub-blocks did not significantly impact the fitness values nor the 

number of iterations.   

(a) Variation of the fitness Values (b) Variation of the number of iterations 

Figure 5: Variation of the fitness and number of iterations of the random and sub-blocks DSMs 

as a function of K 
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4 NKC Model Fundamentals 

In the NKC model, we consider a system of size N, but with S subsystems (Hordijk and 

Kauffman, 2005), where: 

- N: number of total components that are distributed along S sub systems 

- K: number of inter dependencies inside the sub system 

- C: number of external dependencies, that is each component in each sub 

system depends on C other components from other sub systems 

- Nj’: number of components inside subsystem j. Note that the number of 

components within a one subsystem may differ from the number of 

components in another subsystem 
We start by randomly assigning discrete random states (either 0 or 1) and random fitness 

values sampled from a Uniform distribution ranging between 0 and 1 to all components 

in all subsystems. Then, a random subsystem j (1≤j≤S) is selected and a component i 

from subsystem j is randomly chosen to change its state and its corresponding fitness 

value. Next, we randomly sample for the fitness of all components in subsystem j that 

depend on component i. The average fitness of subsystem j is calculated as follows in 

Equation 2: 

Fj=⅀fi /Nj’    (2)  

where fi represent the fitness value of component i in subsystem j.  

If the new average fitness of subsystem j is greater than the previous average fitness, then 

we sample for the fitness values of components, in subsystems other than subsystem j, 

which depend on component i. While if the new average fitness of subsystem j is lower 

than the previous average fitness, we chose another component from subsystem j. 

These steps are repeated until a maximum average fitness of subsystem j is reached. After 

applying the above scenario for all subsystems S, the maximum average fitness of the 

whole system is calculated as:  F= ⅀Fj /S    (3) 

4.1 Examining the Difference between NK and NKC Models 

To notice the difference between the NK and NKC models, both models were run in 

parallel for 1000 runs on the 12 sized DSM, represented in Figure 4b. The variables of 

this DSM, represented in both NK and NKC models, are shown in Table 2. 

Table 2: Variables of the DSM in Figure 4b in NK and NKC Models 

 
NK Model NKC Model 

N 12 12 

K 2 1 

C 0 1 

S 1 3 

N’ - 4 
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The average fitness values and average number of iterations of the 1000 runs are recorded 

in Table 3. The simulated 1000 maximum fitness values and number of iterations are 

displayed in Figure 6. 

Table 3: Average maximum fitness and number of iterations in along the 1000 runs 

 
NK Model NKC Model 

Average Maximum Fitness 0.6505 0.5874 

Average Number of Iterations 32.99 24.468 

Observation 3: As shown in Table 3 and Figure 6, the NKC model reach a lower 

maximum fitness, on average, than the NK model and at a lower average number of 

iterations as well. However, along the 1000 runs, there is not a clear relation between the 

maximum fitness of the NK and NKC models in each run. As for the number of 

iterations, the NKC model clearly takes less iterations than the NK model, almost 

throughout all the 1000 runs, as shown in 

Figure 6 (right). 

Figure 6: Fitness Values (Left) and Number of Iterations (Right) in NK & NKC Models 

 4.2 Effect of N and K on the Performance of NK and NKC models 

To test the effect of changing N and K on the system’s performance in each of the NK 

and NKC models, both models are applied on DSMs of different sizes (N=6, 9 and 12) 

and different dependencies (K=1, 2, 3 and 4). Note that changing the number of 

dependencies in the NKC model is done by either increasing the number of internal 

dependencies K or the number of external dependencies C. 

  
(a)Variation of the average maximum 

fitness  
(b)Variation of the avg. no. of iterations 
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4 X X 0
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6 X X 0

7 X X 0

8 X X 0

9 X X 0

10 X X 0

11 X X 0

12 X X 0

Figure 7: Variation of the average max. fitness as a function of K in the NK & NKC models 

Observation 4: As shown in Figure 7, as the number of dependencies K increase, the 

(average) maximum fitness of both the NK and NKC models generally decrease. In the 

NK model, the decrease occurs slowly as K increases and the curve somehow remains 

flat, however the fitness in the NKC model decreases at a faster rate, and this is clear 

from the slopes that appear to be steeper in the NKC model.  

5 Effect of N, K and Architecture on NK and NKC Models 

In this section, we perform a comprehensive study in which we test both, the NK and 

NKC models, on different numbers of elements N (12 and 16), different number of 

dependencies K (1,2 and 3) and different architectures (Random, Block-Diagonal, and 

Centralized).  

 

 

 

 

 

 

Figure 8: Sample DSM architectures (N=12, K=2) 

Sample DSMs of the different architectures is shown in Figure 8. The results of this test 

(fitness and number of iterations), for each of the three architectures, in the NK and NKC 

models are presented in Figure 9. 

Observation 5: When comparing the fitness values of the DSMs of different 

architectures in Figure 9 (left-side panels) it is noticed that the Random DSM almost has 

the lowest fitness values for both values of N=12 and N=16 in the NK and NKC models. 

On the other hand, we can see that the Centralized DSM always has the highest fitness 

values. As for the Block-Diagonal DSM, its fitness values vary between those of the 

Random and Centralized DSMs.  
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Figure 9: Variation of the fitness values (left-side panels) and the number of iterations (right-side 

panels) as a function of N in NK and NKC models for different DSM architectures 

In Figures 9 (right-side panels), we can see that the Centralized DSM execute the highest 

number of iterations, whereas the Block-Diagonal takes the lowest number of iterations 

for both values of N=12 and N=16 in the NK and NKC models. It is noticed that the 

difference in the number of iterations executed between the three architectures increase in 

each of the NK and NKC models as N increases, i.e. the difference in the number of 

iterations between the three architectures is greater when N=16 than when N=12. Also, 

when comparing the variation of the number of iterations for the different values of K 

(Figures 9 (b), (d), (f)), it is noticed that the behavior and pattern of variation is the same. 

6 Summary and Conclusion 

In this paper, we experimented with the NK and NKC models to investigate their utility 

in the analysis of PD systems represented by DSM models. We tested various parameters 

(in the NK model) that may impact the system’s performance evolution, mainly the 

number of components in the system, the number of dependencies between these 

components, and the system’s architecture. 

We found that as K increases, the fitness is mostly unaffected; however, the process of 

searching for the maximum fitness becomes harder due to having multiple local optima 

(when 0<K<N-1) rather than one global optimum (when K=0). Also, as N increases, we 

noticed that the number of iterations increase, despite the number of dependencies K. As 

for the fitness, it increases with N, provided that we are comparing for the same value of 

K. Finally, we concluded that if the components randomly interact with each other, the 

system’s fitness and number of iterations will be smaller than the case when the elements 
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depend on each other in a structured way (such as Block-Diagonal and Centralized 

DSMs). 

The standard NK and NKC models can be useful for the analysis of PD systems only if 

some adjustments are made, which relate to the difference between biological systems 

and man-made (engineered) systems. First, performance in engineered systems is not 

random and should be proportional to allocated effort. Second, choice of the component 

to work on is also not random but a deliberate choice is made by the development team. 

Third, specifying the type of dependencies between the components; that is, when the 

performance of one component increases, the performance of its dependent components 

may increase or decrease depending on the nature of this dependency. Also, time and cost 

implications of the evolution process is not taken is not account. Finally, PD projects 

have a budget allocated to them and scheduled deadlines to meet. Hence, cannot evolve 

freely until maximum fitness is reached.  

References 

Beesemyer, J. Clark, et al., 2011. Developing methods to design for evolvability: research approach 

and preliminary design principles, 9th Conference on Systems Engineering Research. 

Frenken, Koen, and Stefan Mendritzki., 2012. Optimal modularity: a demonstration of the 

evolutionary advantage of modular architectures. Journal of Evolutionary Economics 22, 

no. 5: 935-956. 

Frenken, Koen., 2006. A fitness landscape approach to technological complexity, modularity, and 

vertical disintegration. Structural Change and Economic Dynamics17, no. 3: 288-305. 

Hordijk, Wim, and Stuart A. Kauffman., 2005. Correlation analysis of coupled fitness 

landscapes. Complexity 10, no. 6: 41-49. 

Kauffman, S.A., 1993. The Origins of Order: Self-Organization and Selection in Evolution. Oxford 

University Press. 

Luo, Jianxi., 2015. A simulation-based method to evaluate the impact of product architecture on 

product evolvability. Research in Engineering Design 26, no. 4: 355-371. 

Oyama, Kyle, Gerard Learmonth, and Raul Chao., 2015. Applying complexity science to new 

product development: modeling considerations, extensions, and implications. Journal of 

Engineering and Technology Management 35: 1-24. 

Rivkin, Jan W., and Nicolaj Siggelkow., 2007. Patterned interactions in complex systems: 

Implications for exploration. Management Science 53, no. 7: 1068-1085. 

Solow, D., Burnetas, A., Tsai, M. C., & Greenspan, N. S., 2000. On the expected performance of 

systems with complex interactions among components. Complex Systems, 12(4), 423-456. 

Yassine, Ali, and Dan Braha., 2003. Complex concurrent engineering and the design structure 

matrix method. Concurrent Engineering 11, no. 3: 165-176. 

Contact: Professor Ali A. Yassine, American University of Beirut, Department of Industrial 

Engineering & Management, Hamra-Bliss Street, PO Box 11-0236, Beirut, Lebanon, 00-961-1-

350-000 Extn. 3439, ali.yassine@aub.edu.lb 

mailto:ali.yassine@aub.edu.lb

