
20TH INTERNATIONAL DEPENDENCY AND STRUCTURE MODELING

CONFERENCE, DSM 2018

TRIESTE, ITALY, OCTOBER 15 – 17, 2018

DSM 2018 47

Experimenting with the NK and DSM Models

Reem Ali Ahmad, Ali Yassine
Department of Industrial Engineering & Management,

American University of Beirut, Beirut, Lebanon

Abstract: The theory of complex systems, which has been applied successfully in

evolutionary biology, is gaining popularity for the modeling and analysis of

complex product development (PD) systems. Modeling complex PD systems is

essential to understand how system elements and their dependencies impact system

properties in several aspects such as performance, convergence, and evolution. In

this paper we use the NK and NKC models to simulate and analyze complex PD

systems, which are represented by the design structure matrix (DSM). The main

objective is to assess whether these models can be useful in analyzing DSMs;

particularly, assessing the effect of architecture on performance and evolution.

Keywords: NK Model, Design Structure Matrix (DSM), Product Development,

Complex Systems, Performance Evaluation

1 Introduction

The theory of complex systems, which has been applied successfully in evolutionary

biology (to study the dynamics and evolution of biological systems), is gaining popularity

in product development (PD) to model and analyze man-made systems (e.g., Frenken and

Mendritzki, 2012; Oyama et al., 2015). In fact, the biological domain is considered an

analogy to complex PD systems where the genes in biological organisms correspond to

the components in complex PD systems and genes in biological organisms depend on

each other in a similar way to the components in man-made systems. Complexity of

biological organisms is reflected by the dependencies between the genes; that is, when

one gene is mutated, it may not just affect its own functionality but also affects the

functionality of all other interdependent genes (Frenken, 2006). The main difference

between the two systems is that man-made systems are designed by designers who are

responsible for making the design decisions whereas biological systems depend on

natural selection (Beesemyer et al., 2011).

This analogy between biological organisms and man- made complex systems is valid in

terms of product evolution as well. Products evolve throughout the generations due to the

continuous changes in the interdependent components’ design, which increases the

systems’ performance. It has been argued that the way these interdependencies are

distributed between the system’s components (i.e. product architecture) affects the

product’s performance and evolvability (Rivkin and Siggelkow, 2007; Luo, 2015). In this

context, modeling complex PD systems is essential to understand how the system

elements and their dependencies impact system properties in several aspects such as

performance, cost, improvement, convergence, and evolution.

According to the NK model, a product system can be defined as a complex system

consisting of a set of N components (or modules), each of which is intended to deliver a

specific functionality (Kauffman, 1993). Hence, each component delivers a specific

function and, in turn, contributes some value to the overall product system. This value is

Part II: Complex Organizations

 DSM 2018 48

referred to by the performance or the fitness value of the component. This component’s

performance depends on its own (design) decision and the decisions of one or more other

components (depending on the system architecture). The decisions made at the

component level are binary. That is, each component is available in two variants, which

represent two alternative designs. A complete product contains exactly one variant of

each component. A vector of length N whose ith element represents a variant of the ith

component is called a design configuration. Standard practice in the NK literature

denotes the variants by 0 and 1, which allows a configuration to be represented by a

binary string (e.g., 0010 for a vector of length N = 4). The N-dimensional possibility

space is called the design space and a specific component configuration defines a product

design. Moreover, a complete product has a corresponding product (system) fitness that

depends on the fitness values of its components. The actual resemblance of this product

fitness is a measure of the performance of the system as a whole. For example, if the

system is a team of employees, then the fitness of the system resembles the problem-

solving effectiveness of this team (Solow et al., 2000).

In this paper we introduce an NK-based simulation model to analyze the design structure

matrix (DSM) to assess the effect of the product architecture on product performance. In

the next section, we introduce the basics of the NK model, and then we test its behavior

based on varying N and K values. In Section 3, we introduce the notion of NK model

using sub-blocks. In Section 4, we introduce the NKC model and run tests to compare its

performance to the standard NK model. We test the various NK models on a set of

different systems architectures in Section 5. We conclude the paper in Section 6.

2 NK Model Fundamentals

In the NK model we consider a system of N components, where each component depends

on K other components (Kauffman, 1993). The NK Model is a mathematical

representation of these dependencies, i.e. it assigns to each component a mathematical

measure that represents the component’s fitness value, taking into account the

dependencies between components, as will be explained later in this section. To apply the

NK model to the N size system, a N size Design Structure Matrix (DSM) is used to

model and represent the system and its components’ dependencies, as illustrated in

Figure 1.

Suppose we have 3 components in a system, where the performance of each component

depends on its own (design) decision and on the decisions of other components. In this

case, N=3 and K=1.

Figure 1: DSM Representation of a Complex System

Figure 1 represents the scenario where each off-diagonal mark “X” represents a

dependency between two components (Yassine and Braha, 2003). For example, the DSM

 1 2 3

1 X

2 X

3 X

R. A. Ahmad, A. Yassine

DSM 2018 49

(assuming that row i depends on column j) shows that the performance of component 1

depends on its own (design) decision and the decisions of component 2. Similarly,

component 2 depends on component 3, and component 3 depends on component 1.

The NK model starts by randomly assigning to each of the N components discrete

random states (either 0 or 1) and corresponding random fitness values sampled from a

uniform distribution ranging between 0 and 1. The fitness of the system, call it F1, is the

average of the fitness values of the N components and can be calculated according to the

formula in Equation (1).

F1=⅀fi/N (1)

Where fi is the fitness value of component i. In our case, shown in Figure 1, i ranges

between 1 and 3 (1≤i≤3) since there are 3 components in the system.

Then, one of the N components is randomly chosen to change its state and its

corresponding fitness value. Furthermore, we change the fitness values of all the

components that depend on this chosen component. For example, if we choose to change

the state of component i (1≤i≤N), then if its state is 0 it becomes 1 and vice-versa. Then,

we change the fitness value of component i as well as the fitness values of all the

components j (1≤j≤N) that depend on component i.

Finally, the average fitness is recalculated, to obtain a new average fitness, call it F2. If F2

is greater than F1, then we repeat the above process starting with the new obtained string

of states and their corresponding fitness values. If F2 is less than F1, then we repeat the

above process after choosing a component other than one previously chosen. This

simulation process continues until a maximum average fitness is reached. Note that if a

string of states is revisited, then their corresponding fitness values should be retained.

2.1 NK Model Simulation

For the DSM in Figure 1, the NK model works as follows. After randomly initializing the

states and the fitness values of these components, we obtain initial states 110 and their

corresponding fitness values 0.85, 0.57 and 0.63, resulting in an initial average fitness

F1=0.68 (Refer to the 7th row in Table 1). Then, the third component is randomly chosen

so its state changes from 0 to 1 and its corresponding fitness value as well as that of

component 2 change to 0.02 and 0.55 respectively, resulting in the 8th row in Table 1.

Table 1: Enumeration of the fitness values of the DSM in Figure 1

 States f1 f2 f3 F

1 000 0.31 0.72 0.37 0.47

2 001 0.31 0.42 0.51 0.41

3 010 0.38 0.57 0.37 0.44

4 011 0.38 0.55 0.51 0.48

5 100 0.15 0.72 0.63 0.5

6 101 0.15 0.42 0.02 0.2

7 110 0.85 0.57 0.63 0.68

8 111 0.85 0.55 0.02 0.47

Part II: Complex Organizations

 DSM 2018 50

This iteration results in the new average fitness F2=0.47<0.68=F1. For this, we return to

the initial ‘110’ string states and randomly choose a new component, i.e. any component

other than the 3rd component. This process is repeated until a maximum average fitness

Fmax is reached. Table 1 enumerates the total 8 cases of this DSM. It is worth noting that

the fitness values are almost always between 0.5 and 0.7 since we are sampling from a

Uniform distribution between 0 and 1.

2.2 Effect of Varying K on the fitness values in the NK Model

To study the effect of K on the evolution of the fitness values, we ran the NK model on

three DSMs of size 5, but with different number of dependencies K: a) K=0, b) 0<K<N-1

and c) K=N-1. The variation of the fitness values in these 3 cases is shown in Figure 2.

Figure 2: Evolution of the Fitness for Various Values of K (N=5)

Figure 2a represents the case where K=0, i.e. the system has no interactions among its

components. In this case, there will only be one state (either 0 or 1) for each element that

is responsible for making the highest fitness contribution to the system. This maximum

fitness, i.e. the only global optimum, is represented by the highest single peak in Figure

2a. All other sub optimal fitness values will eventually reach the global optimum after

having passed through all their neighboring states, which obviously have lower fitness

than the global optimum.

We notice from Figure 2b that as the number of dependencies increases to take any value

between 0 and N-1 (K=2 in our case), the number of fluctuations increases, and the graph

becomes multi-peaked. In this case, each element depends on multiple other elements in

the system, causing the number of the local optima to increase significantly and thus

making it harder for each element to reach an optimum.

In the third case, as K reaches it maximum value, i.e. K=N-1 (K=4 in our case), the DSM

become a completely rugged landscape where each element depends on all other

elements in the system. This property causes the search process for the maximum fitness

to be very difficult, as represented by the huge increase in the peaks of the graph, in

Figure 2c.

2.3 Effect of N and K on the NK Model

To study the effect of the number of elements N and number of dependencies K on the

system’s behavior, the NK model is applied on several DSMs having different N and K.

The corresponding changes in the fitness values and number of iterations are observed

and shown in Figure 3.

Observation 1: As shown in Figure 3, for a fixed N (the number of components) and as

K (the number of dependencies) increases, both the fitness and the number of iterations

(a)

K=0 (b) 0<K<N-1 (c) K=N-1

R. A. Ahmad, A. Yassine

DSM 2018 51

 X X

 X X

 X X

 X X

 X X

 X X

 X X

 X X

 X X

 X X

 X X

 X X

 X X

 X X

 X X

X X

 X X

 X X

 X X

 X X

 X X

 X X

X X

 X X

are not significantly affected. However, both the fitness and the number of iterations

increase with N for a fixed K.

Figure 3: Effect of N and K on the DSM’S behavior

3 NK Model using Sub-blocks

The NK model is also applied in this section; however, the DSM is divided into sub-

blocks prior to simulation. In this case, K is divided into two components; Ki and Ko,

where Ki+Ko=K, Ki is defined as the number of dependencies within the same sub-block,

and Ko as the number of dependencies outside the sub-block. For example, consider

Figure 4b, where a DSM of size 12 and K=2 (Ki =1 and Ko=1), is divided into three sub-

blocks of four components each.

Both Figures 4a and 4b have the same number of components N and dependencies K;

however, the main difference is the way these dependencies are distributed. In Figure 4a,

interactions between components are randomly distributed, however, in Figure 4b, they

are classified according to the number of dependencies within and outside each sub-

block, as described above. For example, the first DSM row has 2 marks (i.e. K=2). One

of these marks is within the first block in the grey part of the row (since Ki =1) and the

other mark is within the white part of the first row (since Ko=1). The rest of the marks are

similarly allocated for each row in the DSM.

(a) 12 sized Random DSM (b) 12 sized DSM with sub-blocks

Figure 4: Sample of 12 sized DSMs having different dependencies’ distribution

Part II: Complex Organizations

 DSM 2018 52

3.1 Effect of N and K on Random NK model and NK model with Sub-blocks

To study the behavior of the DSM with sub-blocks and test how it differs from the

random DSM, the NK model is tested for 200 runs on both random and sub-blocks

DSMs. This test is applied on DSMs with different number of components (N=6, 12 and

15) and dependencies (K=2, 3 and 4) to compare the maximum average fitness values

and the average number of iterations executed by different cases. Also, note that two

cases have been considered for K=3; either Kin =1 and Kout =2 or Kin=2 and Kout=1.

Observation 2: As shown in Figure 5, both random and sub-blocks DSMs behave

similarly with an increase in K. We can conclude that the effect of distributing the

dependencies between the components using sub-blocks is almost negligible on the

system’s fitness and number of iterations.

3.2 NK Models with Different Numbers of Sub-blocks

Each DSM, with a certain number of components N, can be divided into different number

of sub-blocks. For example, the 12 sized DSM, shown in Figure 4b, is divided into three

sub-blocks of 4 components each; however, it can be divided into 2 sub-blocks of 6

components each, or into 4 sub-blocks of 3 components each, etc. Accordingly, we tested

the NK model on a 12 sized DSM, with K=4, divided into different number of sub-blocks

to study the effect on the fitness values and the number of iterations. We observed that

changing the number of sub-blocks did not significantly impact the fitness values nor the

number of iterations.

(a) Variation of the fitness Values (b) Variation of the number of iterations

Figure 5: Variation of the fitness and number of iterations of the random and sub-blocks DSMs

as a function of K

R. A. Ahmad, A. Yassine

DSM 2018 53

4 NKC Model Fundamentals

In the NKC model, we consider a system of size N, but with S subsystems (Hordijk and

Kauffman, 2005), where:

- N: number of total components that are distributed along S sub systems

- K: number of inter dependencies inside the sub system

- C: number of external dependencies, that is each component in each sub

system depends on C other components from other sub systems

- Nj’: number of components inside subsystem j. Note that the number of

components within a one subsystem may differ from the number of

components in another subsystem
We start by randomly assigning discrete random states (either 0 or 1) and random fitness

values sampled from a Uniform distribution ranging between 0 and 1 to all components

in all subsystems. Then, a random subsystem j (1≤j≤S) is selected and a component i

from subsystem j is randomly chosen to change its state and its corresponding fitness

value. Next, we randomly sample for the fitness of all components in subsystem j that

depend on component i. The average fitness of subsystem j is calculated as follows in

Equation 2:

Fj=⅀fi /Nj’ (2)

where fi represent the fitness value of component i in subsystem j.

If the new average fitness of subsystem j is greater than the previous average fitness, then

we sample for the fitness values of components, in subsystems other than subsystem j,

which depend on component i. While if the new average fitness of subsystem j is lower

than the previous average fitness, we chose another component from subsystem j.

These steps are repeated until a maximum average fitness of subsystem j is reached. After

applying the above scenario for all subsystems S, the maximum average fitness of the

whole system is calculated as: F= ⅀Fj /S (3)

4.1 Examining the Difference between NK and NKC Models

To notice the difference between the NK and NKC models, both models were run in

parallel for 1000 runs on the 12 sized DSM, represented in Figure 4b. The variables of

this DSM, represented in both NK and NKC models, are shown in Table 2.

Table 2: Variables of the DSM in Figure 4b in NK and NKC Models

NK Model NKC Model

N 12 12

K 2 1

C 0 1

S 1 3

N’ - 4

Part II: Complex Organizations

 DSM 2018 54

The average fitness values and average number of iterations of the 1000 runs are recorded

in Table 3. The simulated 1000 maximum fitness values and number of iterations are

displayed in Figure 6.

Table 3: Average maximum fitness and number of iterations in along the 1000 runs

NK Model NKC Model

Average Maximum Fitness 0.6505 0.5874

Average Number of Iterations 32.99 24.468

Observation 3: As shown in Table 3 and Figure 6, the NKC model reach a lower

maximum fitness, on average, than the NK model and at a lower average number of

iterations as well. However, along the 1000 runs, there is not a clear relation between the

maximum fitness of the NK and NKC models in each run. As for the number of

iterations, the NKC model clearly takes less iterations than the NK model, almost

throughout all the 1000 runs, as shown in

Figure 6 (right).

Figure 6: Fitness Values (Left) and Number of Iterations (Right) in NK & NKC Models

 4.2 Effect of N and K on the Performance of NK and NKC models

To test the effect of changing N and K on the system’s performance in each of the NK

and NKC models, both models are applied on DSMs of different sizes (N=6, 9 and 12)

and different dependencies (K=1, 2, 3 and 4). Note that changing the number of

dependencies in the NKC model is done by either increasing the number of internal

dependencies K or the number of external dependencies C.

(a)Variation of the average maximum

fitness
(b)Variation of the avg. no. of iterations

R. A. Ahmad, A. Yassine

DSM 2018 55

(a) Random (b) Block Diagonal (c) Centralized

1 2 3 4 5 6 7 8 9 10 11 12

1 X X

2 X X

3 X X

4 X X

5 X X

6 X X

7 X X

8 X X

9 X X

10 X X

11 X X

12 X X

1 2 3 4 5 6 7 8 9 10 11 12

1 X X

2 X X

3 X X

4 X X

5 X X

6 X X

7 X X

8 X X

9 X X

10 X X

11 X X

12 X X

1 2 3 4 5 6 7 8 9 10 11 12

1 0 X X

2 X 0 X

3 X X 0

4 X X 0

5 X X 0

6 X X 0

7 X X 0

8 X X 0

9 X X 0

10 X X 0

11 X X 0

12 X X 0

Figure 7: Variation of the average max. fitness as a function of K in the NK & NKC models

Observation 4: As shown in Figure 7, as the number of dependencies K increase, the

(average) maximum fitness of both the NK and NKC models generally decrease. In the

NK model, the decrease occurs slowly as K increases and the curve somehow remains

flat, however the fitness in the NKC model decreases at a faster rate, and this is clear

from the slopes that appear to be steeper in the NKC model.

5 Effect of N, K and Architecture on NK and NKC Models

In this section, we perform a comprehensive study in which we test both, the NK and

NKC models, on different numbers of elements N (12 and 16), different number of

dependencies K (1,2 and 3) and different architectures (Random, Block-Diagonal, and

Centralized).

Figure 8: Sample DSM architectures (N=12, K=2)

Sample DSMs of the different architectures is shown in Figure 8. The results of this test

(fitness and number of iterations), for each of the three architectures, in the NK and NKC

models are presented in Figure 9.

Observation 5: When comparing the fitness values of the DSMs of different

architectures in Figure 9 (left-side panels) it is noticed that the Random DSM almost has

the lowest fitness values for both values of N=12 and N=16 in the NK and NKC models.

On the other hand, we can see that the Centralized DSM always has the highest fitness

values. As for the Block-Diagonal DSM, its fitness values vary between those of the

Random and Centralized DSMs.

Part II: Complex Organizations

 DSM 2018 56

Figure 9: Variation of the fitness values (left-side panels) and the number of iterations (right-side

panels) as a function of N in NK and NKC models for different DSM architectures

In Figures 9 (right-side panels), we can see that the Centralized DSM execute the highest

number of iterations, whereas the Block-Diagonal takes the lowest number of iterations

for both values of N=12 and N=16 in the NK and NKC models. It is noticed that the

difference in the number of iterations executed between the three architectures increase in

each of the NK and NKC models as N increases, i.e. the difference in the number of

iterations between the three architectures is greater when N=16 than when N=12. Also,

when comparing the variation of the number of iterations for the different values of K

(Figures 9 (b), (d), (f)), it is noticed that the behavior and pattern of variation is the same.

6 Summary and Conclusion

In this paper, we experimented with the NK and NKC models to investigate their utility

in the analysis of PD systems represented by DSM models. We tested various parameters

(in the NK model) that may impact the system’s performance evolution, mainly the

number of components in the system, the number of dependencies between these

components, and the system’s architecture.

We found that as K increases, the fitness is mostly unaffected; however, the process of

searching for the maximum fitness becomes harder due to having multiple local optima

(when 0<K<N-1) rather than one global optimum (when K=0). Also, as N increases, we

noticed that the number of iterations increase, despite the number of dependencies K. As

for the fitness, it increases with N, provided that we are comparing for the same value of

K. Finally, we concluded that if the components randomly interact with each other, the

system’s fitness and number of iterations will be smaller than the case when the elements

R. A. Ahmad, A. Yassine

DSM 2018 57

depend on each other in a structured way (such as Block-Diagonal and Centralized

DSMs).

The standard NK and NKC models can be useful for the analysis of PD systems only if

some adjustments are made, which relate to the difference between biological systems

and man-made (engineered) systems. First, performance in engineered systems is not

random and should be proportional to allocated effort. Second, choice of the component

to work on is also not random but a deliberate choice is made by the development team.

Third, specifying the type of dependencies between the components; that is, when the

performance of one component increases, the performance of its dependent components

may increase or decrease depending on the nature of this dependency. Also, time and cost

implications of the evolution process is not taken is not account. Finally, PD projects

have a budget allocated to them and scheduled deadlines to meet. Hence, cannot evolve

freely until maximum fitness is reached.

References

Beesemyer, J. Clark, et al., 2011. Developing methods to design for evolvability: research approach

and preliminary design principles, 9th Conference on Systems Engineering Research.

Frenken, Koen, and Stefan Mendritzki., 2012. Optimal modularity: a demonstration of the

evolutionary advantage of modular architectures. Journal of Evolutionary Economics 22,

no. 5: 935-956.

Frenken, Koen., 2006. A fitness landscape approach to technological complexity, modularity, and

vertical disintegration. Structural Change and Economic Dynamics17, no. 3: 288-305.

Hordijk, Wim, and Stuart A. Kauffman., 2005. Correlation analysis of coupled fitness

landscapes. Complexity 10, no. 6: 41-49.

Kauffman, S.A., 1993. The Origins of Order: Self-Organization and Selection in Evolution. Oxford

University Press.

Luo, Jianxi., 2015. A simulation-based method to evaluate the impact of product architecture on

product evolvability. Research in Engineering Design 26, no. 4: 355-371.

Oyama, Kyle, Gerard Learmonth, and Raul Chao., 2015. Applying complexity science to new

product development: modeling considerations, extensions, and implications. Journal of

Engineering and Technology Management 35: 1-24.

Rivkin, Jan W., and Nicolaj Siggelkow., 2007. Patterned interactions in complex systems:

Implications for exploration. Management Science 53, no. 7: 1068-1085.

Solow, D., Burnetas, A., Tsai, M. C., & Greenspan, N. S., 2000. On the expected performance of

systems with complex interactions among components. Complex Systems, 12(4), 423-456.

Yassine, Ali, and Dan Braha., 2003. Complex concurrent engineering and the design structure

matrix method. Concurrent Engineering 11, no. 3: 165-176.

Contact: Professor Ali A. Yassine, American University of Beirut, Department of Industrial

Engineering & Management, Hamra-Bliss Street, PO Box 11-0236, Beirut, Lebanon, 00-961-1-

350-000 Extn. 3439, ali.yassine@aub.edu.lb

mailto:ali.yassine@aub.edu.lb

