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Abstract (300-500 words) 
In modern product development, the use of sophisticated simulation tools for assessing the 
effects of design changes on the intended product behavior is essential. However, setting up 
valid simulations requires expert knowledge, acquired skills, and sufficient expertise. Design 
engineers, who perform finite element analysis (FEA) infrequently, must be assisted and their 
FEA results need to be checked for plausibility. An automatic plausibility check for finite 
element (FE) simulations in linear structural mechanics can identify non-plausible simulations 
and warn the user to interpret the results cautiously or ask for expert help. In this context, 
currently available tools can only compare very similar simulations. 
However, as the amount of available simulation data in the industry increases more and more, 
a data-driven simulation check is an obvious next step. Nevertheless, the question arises how 
simulation data of very different parts and simulations can be transferred to a single software 
tool, how this tool can learn the relevant rules behind plausible simulations, and how it can be 
applied to new simulations. In this context, it is especially important to train a metamodel that 
is able to generalize the rules so that it can later on be applied to unknown simulations. 
 
This paper presents an approach to transfer different FE meshes, corresponding FE results and 
boundary conditions to an individual matrix of fixed size for very different structural mechanic 
FE simulation. The novel approach uses spherical detector surfaces to project three-dimensional 
information on its surface. It allows generating the so-called “DNA of an FE simulation”; 
classification algorithms i.e. Support Vector Machines or Deep Learning Neural Networks such 
as Convolutional Neural Networks (CNN) can then classify this information. The whole 
methodology reduces the dimension of a 3D finite element simulation to a 2D matrix of numeric 
values. The matrix contains all the relevant information for the classification in “plausible” or 
“non-plausible”. An implausible simulation contains errors, which would be quickly identified 
by an experienced simulation engineer, whereas a plausible simulation does not contain such 
errors. As less experienced simulation users in design departments are not trained to find such 
errors in their simulation setup, they cannot detect them and take adequate countermeasures. 
 



In the paper, every single step of the novel methodology for plausibility checking of structural 
mechanics simulations will be illustrated and explained in detail for simplified parts and 
corresponding simulations.  
  
Keywords: Plausibility Check, Convolutional Neural Network, Deep Learning, Data-driven 
approach, design automation, visualization 

1 Introduction 

In current product development not only the amount of data is continuously increasing, but also 
the density of data (Sauer, Küstner, Schleich & Wartzack, 2017). In some companies of the 
automotive supply industry, several thousand FE simulations are done each day for different 
components. If simulations with non-ideal geometries (Schleich, Anwer, Mathieu & Wartzack, 
2015) are performed, the amount of data increases even more. The simulated parts are of course 
not completely different from each other, but the simulated parts differ in geometry and 
boundary conditions and the simulations are performed by different engineers. It must be kept 
in mind that not only experienced simulation engineers with multiple years of experience 
perform these simulations, but also less experienced users (Kestel, Schneyer & Wartzack, 
2016). Consequently, there is a need to have automatic plausibility checks to find obviously 
wrong simulation setups automatically. Machine Learning algorithms, such as Convolutional 
Neural Networks, are very well suited for this purpose. For similar simulations, algorithms can 
be used to compare the results from new simulations with the results from previous simulations, 
as long as the simulations are somehow similar. Therefore, the research question arises: How 
can heterogeneous FE simulations be used as an input for Machine Learning algorithms? In this 
contribution a methodology is presented how linear structural mechanic FE simulations can be 
transformed to a matrix of fixed size (containing the relevant simulation information to classify 
simulations as “plausible” or “non-plausible”). This matrix can be named as the “DNA of an 
FE simulation”. In section 2 the current state of the art is presented, followed by the description 
of the methodology in section 3. Finally a conclusion and outlook is presented in section 4. 

2 State of the art 

In modern product development the influence of data is getting more and more important and 
the amount of data is constantly evolving. Especially in the field of simulation the amount of 
available data from previous simulations is growing very fast. At first the terms Data Mining, 
Data Driven Design, Artificial Neural Networks, Deep Learning and plausibility are presented 
briefly. 

2.1 Data Mining 

Generally the notion Data Mining, also referred to as knowledge discovery in databases (KDD) 
(Quin & Tang, 1995; Chen, Han & Yu, 1996), includes a broad field of techniques and methods 
used for extracting (mining) previously unknown and potentially useful information, such as 
knowledge rules, constraints, regularities, from large amounts of data (Quin & Tang, 1995; 
Chen et al., 1996; Runkler, 2010). This field of research consists of, amongst others, methods 
for Classification, Regression-Analysis, Correlation-Analysis and Clustering (Runkler, 2010). 
The discovered knowledge can be applied to information management, query processing, 
decision making, process control, and many other applications (Chen et al., 1996). There are a 
number of different approaches contemplating Data Mining. According to the CRISP-DM 
(CRISP-Data Mining) Methodology, Data Mining can be divided into five main parts: Data 
Understanding, Data Preparation, Modelling, Evaluation and Deployment (Chapman, 1999). 



Furthermore, Zhou (2002) regards Data Mining from three different perspectives (and the 
corresponding emphases): databases (efficiency), machine learning (effectiveness) and 
statistics (validity) in order to realize adequate mining methods.  

2.2 Data-driven (Engineering) Design 

Data-driven Design in the context of engineering is utilized for designing systems or processes, 
as fault detection and isolation, fault-tolerant control, optimization, process monitoring (Ding, 
2012; Yin, Ding, Xie & Luo, 2014) and adaptive residual generator design (Ding, Yin, Zhang, 
Ding & Naik, 2009) by using information extracted from a large amount of data. Compared 
with the widespread model-based process monitoring design framework, the data-driven design 
framework is still in its early development phase. The most challenging topic, contemplating 
data-driven design, is dealing with incomplete data (Yin et al., 2014).  

2.3 Artificial Neural Networks 

Artificial Neuronal Networks (ANN), or just Neural Networks (NN), are a specific form of 
metamodel. They are inspired by biological neural systems, as bioelectrical networks in the 
brain of mammals, formed by neurons and their synapses, which are capable to perform intricate 
and complex computations without using explicit quantitative operations. In an ANN, nodes, 
also called neurons, are connected together to create a network. Contemplating their generation 
and function, ANN can be assigned to the field of machine learning (Quin & Tang, 1995; Kruse, 
Borgelt, Braune, Klawonn, Moewes & Steinbrecher, 2015). ANN are able to perform powerful 
pattern classification and recognition (Zhang, Patuwo & Hu, 1997) and are utilized in a variety 
of different research fields in business, industry and science for very different tasks. Such as 
forecasting (Zhang et al., 1997), cancer management (Dayhoff & DeLeo, 2001) and real-time 
process control for small utilities (Zhang, Shariff, Smith, Cudrak & Stanley, 2007).  

2.4 Deep Learning 

The term Deep Learning describes techniques to create computational models such as Artificial 
Neural Networks that consist of multiple operating layers to handle and process data using 
various levels of abstraction. The models are capable to discover complex structures within 
large data sets utilizing backpropagation algorithm (Bengio, 2009; LeCun, Bengio & Hinton, 
2015; Deng, 2012). Deep Learning is located in the field of unsupervised learning, where no 
teacher is used. To distinguish Deep Learning Networks from conventional Neural Networks 
the concept of Credit assignment paths is used (Schmidhuber, 2014). For classification with 
Convolutional Neural Networks (CNN) supervised learning algorithms are used for training. 
Unsupervised learning algorithms for instance are used for clustering.   

2.5 Plausibility of simulations and simulation results 

Plausible FE simulations are apparently, likely valid (Spruegel, Schröppel & Wartzack, 2017). 
Consequently, they contain no obvious errors – which would be recognized easily by 
experienced simulation engineers. Plausibility checks are used in various fields (publications 
often in german): 

§ Plausibility checks to analyze electrical breakdown mechanisms in syntactic foams 
(Tröger, 2009)  

§ Plausibility checks for the measurement of uncertainties in soil analysis (Nestler, 
2007).  

§ Plausibility checks for vehicle sensor data (Tischler, 2013).  



§ Plausibility checks in dynamic simulations for a cylindrical roller bearing model in 
wind turbines based on the known behaviors of bearings (Qian, 2013).  

§ Plausibility checks of integrated behavior models for consistency and critical signs 
(Ermel, Gall, Lambers & Taentzer, 2011).  

§ Automated pre-plausibility checks of input data for Intra-Logistic-Simulations in 
digital factories, entered by users (Müller-Sommer & Straßburger, 2010). 

However, it lacks a systematic approach to the plausibility check of FE simulations using 
machine-learning methods. As a response to this, a method for the transfer of FE data to such 
data-mining techniques is presented. A plausible simulation does not contain obvious errors, 
that a simulation engineer would find quickly (i. e. mix-up of units, missing boundary 
conditions, above the ordinary forces or moments, too coarse meshes, etc.). 

3 Transfer of FE data to Artificial Neural Networks 

Artificial Neural Networks (ANN) are used in a vast variety of applications. Both regression 
and classification are common tasks. The simulation results from similar simulations can be 
transferred to neural networks very easily (i.e. stresses, deformations or safety factors at specific 
nodes). But currently there is no methodology available to transfer heterogeneous FE simulation 
data to neural networks. The presented methodology in this paper can transfer all relevant FE 
data (i. e. mesh, boundary conditions and results) to machine learning algorithms - such as 
ANN. The simulations can be totally different in case of geometry, boundary conditions or 
mesh. Preliminary work to this publication can be found in the contributions of Spruegel, 
Schröppel & Wartzack, (2017) and Spruegel, Kestel & Wartzack, (2016); in this publication 
the whole methodology is presented – including the visualization of sub-steps. 

 
Figure 1. Graphic representation of the methodology for plausibility checks of heterogeneous simulation 
data 



The methodology for plausibility checks for finite element simulations is illustrated in Figure 1. 
Within the two circles the substeps “CAD geometry”, “Finite Element Analysis”, “uniform 
orientation”, “projection of FE data to sphere” and “conversion of a simulation to one single 
matrix” show the solution to the research question: How can heterogeneous FE simulations be 
used as an input for ANN. Each of these steps will be presented and visualized for a simple 
block-like part in section 3.1 to 3.5. 
 

3.1 Sub-steps “CAD geometry” and “Finite Element Analysis” 

The presented methodology focuses on linear structural mechanic FE simulations of individual 
parts, consequently assemblies or nonlinear behavior are not considered yet. The start is always 
the CAD model which is simulated using commercial FE software. After the pre-processing 
and the processing of the FEA, information about the mesh, the boundary conditions and the 
simulation results is available. Figure 2 shows the modeled block, including the defined 
boundary conditions and the dimensions. 
 

 
Figure 2. Demonstrator: Simple L-shaped block with FE simulation boundary conditions and dimensions 

3.2 Sub-step “uniform orientation” 

Similar parts in different FE simulations are not oriented in the same way, but the simulations 
need to be considered similarly. Therefore, a uniform orientation of the geometry must be 
extracted from the given point cloud of the FE mesh.  
A property of the point cloud is used, which is unique for each initial orientation, since the 
property is limited to the relative position of the data points to each other. An orientation vector 
is stretched between the weighted center of a point cloud (the arithmetic mean of all data points 
in each coordinate direction) and the unweighted center (the median of maximum and minimum 
value per coordinate direction). The weighted center is often referred to as the center of gravity 
of the point cloud, because it forms the integral mean of all nodes of the cloud, analogous to 
the mass center of gravity of a component. The median, also known as the mean value, therefore 
corresponds to the value in the middle of all nodes and is independent of the node distribution 
within the two extreme values required for calculation. The point cloud is centered in its center 
of gravity and transformed into one of the main orientations by means of a principal component 
analysis. This step is necessary in advance to align the point cloud along one of its main axes. 
On the one hand, this has the advantage that it always ends visually in a clean alignment and 
on the other hand, the total number of possible orientations per octant is strongly limited by the 
PCA; thus, all possible orientations can be covered by the following transformation rules. 



Afterwards, for the centered and aligned point cloud, both the weighted center (which must lie 
exactly in the coordinate origin after centering) and the unweighted center can be calculated. In 
contrast to the center of gravity, the mean value varies for each starting position and is an 
indication of the orientation of the point cloud. As a rule, it is not identical to the centre of 
gravity. By means of the two values just calculated, a statement can be made about which of 
the eight octants this orientation vector shows. The last step deals with setting up specific 
transformation rules for each of the octants. For this purpose, one of the octants must be selected 
as a fixed point: Each of the orientation vectors of the point clouds shall show in these specified 
octants after the transformation (see Figure 3). 
 

 
Figure 3. Transformation regulation for uniform orientation methodology 

3.3 Sub-step “projection of FE data to sphere” 

In commercial FE software solid CAD parts are meshed with tetrahedral or hexahedral 
elements. In Figure 4 the L-shaped block with hexahedral FE mesh is shown. The spherical 
detector surface with 36x36 pixels (equal detector area per pixel) is shown outside of the block.  

 
Figure 4. Node Projection of a simple block to the spherical detector surface (36x36 pixels) 



The center of gravity of the block is the origin of the detector surface. Therefore, each node of 
the mesh can be projected onto the surface originating from the center of gravity. Each node is 
projected to a specific pixel, but multiple nodes can be projected to one pixel. Like a geography 
map, the surface of the detector sphere can be unfolded to a 2-dimensional matrix. This detector 
matrix is shown on the right in Figure 4 with the corresponding number of projected nodes to 
the 36x36 = 1,296 pixels. The projection of the nodes to a specific pixel only depends on the 
azimuth and polar angle of the spherical detector surface in spherical coordinates. Therefore, 
the pixels are labeled as polar pixels and azimuth pixels numbered from 1 to 36. Every geometry 
including parts with undercuts or holes can be projected onto the surface. The projection process 
is not reversible.   

3.4 Sub-step “conversion of a simulation to one single matrix” 

After the projection of the nodes to the sphere, for each node one specific pixel is assigned. In 
FE simulations all relevant information is node-bound, this means that it is known whether a 
node has fixed constraints due to defined supports or Forces are applied to specific nodes of the 
FE mesh. Also, all the results (i. e. stresses and deformations) are node-bound. Consequently it 
is possible to build different matrices for all the mentioned information. For example all the 
equivalent stresses from the nodes projected to one pixel can be accumulated.  

 
Figure 5. Generated Matrix (“DNA of an FE simulation”) for one FE simulation 

In Figure 5 the different matrices for nodes, supports (displacement and rotation), loads (forces, 
moments) and results (stresses and deformations) can be seen. Each of these matrices has the 



same size as the number of pixels from the detector surface (i. e. 36x36). All the numerical 
matrices from one simulation can be combined to form one big numerical matrix (size 36x1,152 
pixels), as shown in the middle of Figure 5. As all the values from the different nodes are 
accumulated, the range in values is very different. For example the equivalent stress matrix 
normally contains much higher values than the deformation matrix in X-direction. Different 
Normalization strategies can be applied to transform the numerical matrices in the typical range 
of -1 to +1. This is important, as most neural networks demand normalized input and output 
information.  
For each of the 36x36 matrices different normalization strategies are applied. The stresses are 
normalized according to the multiple yield strength and the number of projected nodes at each 
pixel. Typical min max normalization is not suitable as the same part with fine and coarse 
meshes would lead to the same normalized matrix. This is not suitable for the presented 
methodology. 
During the creation of the data-base (see Figure 1 light grey circle) each matrix of each 
simulation must be labeled. For example validated simulations could be labeled “plausible”, 
whereas simulations with multiple iterations could be labeled “non-plausible”. In this context, 
many different options for different labels are imaginable.  

3.5 Training, testing and application of a machine learning classifier 

For the training and testing of a machine learning classifier, a large data-base of labeled data is 
mandatory. Large suppliers of the automotive industry perform several thousand FE 
simulations a day. These simulations can be easily used to form a large database, containing 
both plausible and non-plausible simulations. In academia, large parameter studies can be used 
to generate data-set with several ten thousand simulations. The data-base can then be used to 
train a typical classifier, such as a Convolutional Neural Network (CNN). After the training of 
the network the performance is evaluated using data-sets that were not used during the training 
to evaluate the quality of the trained networks. Usually goodness-of-fit parameters such as the 
„accuracy“ (derived from the confusion matrix; Powers, 2011) is calculated. Good CNNs 
should reach 90% or more. After the training the CNN can be used to classify a new simulation 
into the categories “plausible” or “non-plausible”. In Figure 1 this process is displayed with the 
dark grey cycle. Starting from the FE information from the post-processing, the mesh is oriented 
and then the corresponding matrices (nodes, boundary conditions, results) are calculated and 
transformed and normalized in one big matrix. This matrix represents the whole FE simulation 
and is the input for the previously trained CNN. According to the input matrix, the simulation 
is classified into the pre-trained categories (i. e. “plausible” or “non-plausible”) by the CNN.  

4 Conclusion and outlook 

Data-driven product development has large potential to eliminate unnecessary iterations during 
product development. Already existing simulation data can be used to recognize non-plausible 
FE simulation. This is essential as FE simulations are not only performed by experienced 
simulation engineers with many years of expertise. Machine Learning algorithms are very well 
suited to classify nonlinear data in different categories, but the question arises how to transfer 
heterogeneous simulation data form different simulations to one classification algorithm. In this 
paper a methodology is presented that is able to transfer linear structural mechanical FE 
simulation data to Convolutional Neural Networks. The methodology uses spherical detector 
surfaces to calculate a specific numerical matrix that represents one simulation. The different 
sub-steps of the methodology are explained in detail and visualized with a simple geometry. 
In the future a large data-base with approximately 100,000 FE simulations of different parts 
with different boundary conditions will be generated. Afterwards different machine learning 



algorithms will be applied and adapted for the given data-set. The performance of the classifier 
will be tested with unknown data-sets. Goodness-of-fit parameters such as the accuracy should 
reach above 90% to get a reliable classifier. 

Acknowledgement 
The authors would like to thank the NVIDIA Corporation and the academic GPU Grant 
Program for the donation of a Tesla GPU. 
This research work is part of the FAU “Advanced Analytics for Production Optimization” 
project (E|ASY-Opt) and funded by the Bavarian program for the “Investment for growth and 
jobs” objective finance by the European Regional Development Fund (ERDF), 2014-2020. It 
is managed by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology. 
The authors are responsible for the content of this publication. 
 
References 
Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends in Machine 

Learning. 
Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.; Chearer, C., & Wirth, R. 

(1999). CRISP-DM 1.0. Step-by-step Data Mining guide. CRISP-DM consortium. 
Chen, M.-S.; Han, J., & Yu, P. (1996). Data Mining: An Overview from a Database Perspective. 

IEEE Transactions on Knowledge and Data Engineering Vol. 8, No. 6. 
Dayhoff, J., & DeLeo, J. (2001). Artificial Neural Networks. Opening the Black Box. 

Conference on Prognostic Factors and Staging in Cancer Management: Contributions 
of Artificial neural Networks and Other Statistical Methods. 

Deng, L. (2012). Three Classes of Deep Learning Architectures and Their Applications: A 
Tutorial Survey. Microsoft Research. Redmond. USA. 

Ding, S.; Yin, S.; Zhang, P.; Ding, E., & Naik, A. (2009). An approach to data-driven adaptive 
residual generator design and implementation. Proceedings of the 7th IFAC Symposium 
on Fault Detection, Supervision and Safety of Technical Processes. Spain. 

Ding, S. (2012). Data-Driven Design of Fault-Tolerant Control Systems. 8th IFAC Symposium 
on Fault Detection, Mexico. 

Ermel, C.; Gall, J.; Lambers, L. & Taentzer, G. (2011). Modeling with Plausibility Checking: 
Inspecting Favorable and Critical Signs for Consistency between Control Flow and 
Functional Behavior. International Conference on Fundamental Approaches to 
Software Engineering (FASE). Saarbrücken, 26. March – 3. April 2011.Summary of 
Proceedings, Springer, Berlin. pp. 156-170. DOI 10.1007/978-3-642-19811-3_12. 

Kestel, P., Schneyer, T., & Wartzack, S. (2016). Feature-based approach for the automated 
setup of accurate design-accompanying Finite Element Analyses. In Proceedings of the 
14th International Design Conference. Dubrovnik. 

Kruse, R.; Borgelt, C.; Braune, C.; Klawonn, F.; Moewes, C., & Steinbrecher, M. (2011). 
Computational Intelligence. Vieweg+Teubner Verlag, Springer Fachmedien Wiesbaden 
GmbH. 

LeCun, Y.; Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature Review Article. 
Müller-Sommer, H. & Straßburger, S. (2010). Methods for the Plausibility Check of Input Data 

for Intra-Logistic-Simulations. Integration Aspects of Simulation: Equipment, 
Organization and Personnell. Karlsruhe, 7.-8. October 2010. KIT Scientific Publishing. 
Karlsruhe. pp. 61-68. 



Nestler, A. (2007). Bestimmung der Messunsicherheit für die Verfahren und Methoden zur 
Bodenanalytik des Anhanges 1 der Bundes-Bodenschutz- und Altlastenverordnung. 
Dissertation. Freie Universität Berlin. 

Powers, D.M.W. (2011). “Evaluation: From precision, recall and f-measure to roc., 
informedness, markedness & correlation”. Journal of Machine Learning Technologies. 
Vol. 2 No.11. pp. 37-63. 

Quin, Z., & Tang, Y. (1995). Uncertainty Modeling for Data Mining. A Label Semantics 
Approach. Springer. 

Qin, Z., & Tang, Y. (2014). Uncertainty Modeling for Data Mining, A Label Semantics 
Approach. Springer, Berlin Heidelberg. DOI 10.1007/978-3-642-41251-6. 

Runkler, T. (2010). Data Mining. Methoden und Algorithmen intelligenter Datenanalyse. 
Vieweg+Teubner. Wiesbaden. 

Sauer, C., Küstner, C., Schleich, B., & Wartzack, S. (2017). Einsatz von Deep Learning zur 
ortsaufgelösten Beschreibung von Bauteileigenschaften. In Krause, D.; Paetzold, K.; 
Wartzack, S. (Eds.), Design for X. Beiträge zum 28. DfX-Symposium (pp. 49-60). 
Bamberg, DE: Hamburg: TuTech Verlag. 

Schleich, B.; Anwer, N.; Mathieu, L., & Wartzack, S. (2015). Contact and Mobility Simulation 
for Mechanical Assemblies Based on Skin Model Shapes. Journal of Computing and 
Information Science in Engineering, 15(2), 021009-1-021009-7. 
https://dx.doi.org/10.1115/1.4029051 

Schmidhuber, J. (2014). Deep Learning in Neural Networks: An Overview. The Swiss AI Lab 
IDSIA. Switzerland. 

Spruegel, T.; Kestel, P., & Wartzack, S. (2016). FEA-Assistenzsystem – Plausibilitätsprüfung 
für Finite-Elemente-Simulationen mittels sphärischer Detektorflächen. In Krause D., 
Paetzold K., Wartzack S. (Eds.), Beiträge zum 27. DfX-Symposium. Jesteburg. 

Spruegel, T.C.; Schröppel, T. & Wartzack, S. (2017). Generic Approach to Plausibility Checks 
for Structural Mechanics with Deep Learning. In: Proceedings of the 21st International 
Conference on Engineering Design (ICED17), Vol. 1: Resource-Sensitive Design | 
Design Research Applications and Case Studies, Vancouver, Canada, 21.-25.08.2017. 

Tischler, K. (2013). Informationsfusion für die cooperative Umfeldwahrnehmung vernetzter 
Fahrzeuge. Dissertation. Karlsruher Institut für Technologie (KIT). 

Tröger, K.A. (2009). Analyse der elektrischen Durchschlagmechanismen in syntaktischen 
Schäumen. Dissertation. RWTH Aachen University. 

Yin, S.; Ding, S.; Xie, X., & Luo, H. (2014). A Review on Basic Data-Driven Approaches for 
Industrial Process Monitoring. IEEE Transactions on industrial electronics, Vol. 61, No. 
11. 

Zhang, G.; Patuwo, B., & Hu, M. (1997). Forecasting with artificial neural networks: The state 
of the art. International Journal of Forecasting 14 (1998) 35–62. 

Zhang, Q.; Shariff, R.; Smith, D.; Cudrak, A., & Stanley, S. (2007). Artificial neural network. 
real-time process control system for small utilities. Journal AWWA. 

Zhou, Z.-H. (2002). Three perspectives of Data Mining. Elsevier Science B.V. 
 


