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Abstract 
Within the Transregional Collaborative Research Centre 73, a self-learning engineering workbench is 
being developed. It assists product developers in designing sheet-bulk metal formed (SBMF) parts by 
computing the effects of given product and process characteristics on the product properties. This 
contribution presents a novel approach to using deep learning methods for the properties prediction. By 
making use of a parameter study of 20 SBMF part designs, a metamodel is trained and used to predict 
the total equivalent plastic strain on local level as an indicator for part manufacturability. 
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1. Introduction 
In the light of global warming, conservation of resources and lightweight part design are key issues for 
the coming product generations. These issues are tightly entangled with the design of highly function-
integrated parts as well as their efficient production. To achieve this, modern product developers use 
methods of Design for X, such as design for manufacturing, design for resource efficiency and design 
for function integration. However, in recent years and against the background of steadily increasing 
product and process complexity, established design rules and guidelines in the context of design for X 
proved to be insufficient (Wartzack et al., 2017). 
In addition to that, the amount of data generated while designing new products also rose to a level, which 
leads experts to speak of it as "Big Data". Therefore, modern product developers are in a dilemma. On 
the one hand, the design process switched from good/bad design rules to a more complex system and 
first and foremost to a multiobjective optimization problem. On the other hand, designers have as much 
information about designs and processes as never before. 
This dilemma has led to the development of so-called engineering workbenches, which support product 
developers in their design work by providing them with the information about the product at the right 
time. They are an additional source and tool for handling knowledge and information at any given time. 
These tools are mainly based on the adoption of Data Mining algorithms, which try to get a grip on the 
massive amounts of data that are produced while designing products. The employed algorithms provide 
product developers with predictions about the product behaviour using the data that is generated during 
the development, e.g. from process experts or manufacturing scientists. 
Within the Transregional Collaborative Research Centre 73 (SFB/TR 73), such an engineering 
workbench is developed. It is supposed to assist product developers in designing parts produced by a 
new type of forming process called sheet-bulk metal forming (SBMF), which combines bulk-forming 
operations with sheet metals to create lightweight parts. With reduction of mass and heavily loaded 
functional elements, SBMF both exceeds the limits of existing technologies and provides a high 
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throughput in terms of the number of produced workpieces (Hetzner et al., 2011). Against the 
background of resource efficiency, this is a strong argument for the further development of SBMF. 
Concerning the development of engineering workbenches, new data mining algorithms prove 
themselves as suitable for the use in such tools. In particular, neural networks and deep learning are 
developed as new prediction algorithms. However, their training requires vast amounts of data, which 
should ideally be in the form of structured tables (Witten et al., 2017). By the existence of such data in 
SBMF, neural networks, especially deep learning, show themselves valuable in the development of the 
engineering workbench for sheet-bulk metal forming. This contribution explores the possibility of the 
adoption of such algorithms in current generation engineering workbenches. The novelty of the 
contribution can be found in the utilization of deep learning methods for the manufacturability analysis 
on local part level considering new forming technologies.  
The paper is structured as follows. In the next section, a brief background regarding sheet-bulk metal 
forming, knowledge acquisition through data mining, the engineering workbench SLASSY, current 
methods for knowledge representation, and deep learning is given. After this, the possibilities for deep 
learning in sheet-bulk metal forming are explored. Based thereon, the revision of the existing 
engineering workbench for SBMF is elaborated. Finally, a conclusion and an outlook are given.  

2. Background and related work 
Before highlighting the possibilities for deep learning in the innovative forming technology sheet-bulk 
metal forming as well as elaborating the adoption of the existing engineering design workbench 
SLASSY, this section is to provide the reader with all relevant background information.  

2.1. Sheet-bulk metal forming 
The overall objective of SBMF is the development of a new forming process technology to manufacture 
heavily loaded functional elements on sheet metal parts with tight geometrical tolerances (see SBMF 
parts in Figure 1). For this purpose, the sheet operations are extended by bulk-forming operations within 
sheet thickness. In general, sheet-bulk metal formed parts consist of two basic elements: The primary 
design elements (PDE) that essentially represent sheet parts (manufactured by sheet operations) and the 
secondary design elements (SDE), which provide the high function integration 
(Breitsprecher and Wartzack, 2013). By using this manufacturing technology, product developers are 
empowered to create locking tooth or deep drawn parts with pockets or sheet metal parts with functional 
elements (see Figure 1). 

 
Figure 1. Examples of sheet-bulk metal formed parts 

For designing parts, product developers need to know the constraints of the underlying manufacturing 
technology. Therefore, the established design approach is to follow published guidelines or to talk 
directly to the manufacturing experts about a specific design. In the context of product development for 
sheet-bulk metal forming, there are no design rules available yet. Engineers or scientists (experts) are 
not able to give specific guidelines or design rules for now. Furthermore, important criteria are often 
conflicting. We can summarize the following aspects: 

 Manufacturing technologies being developed do neither have any experts nor good/bad rules (no 
explicit manufacturing knowledge) 

 experts criteria for evaluation of the manufacturability of a design are vague and could be 
conflicting (implicit manufacturing knowledge) 
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One key aspect of the research in this field is to tackle these problems by developing an efficient self-
learning engineering workbench, which can support the decisions of product developers in designing 
new parts. 

2.2. Acquisition of knowledge through data mining 
In order to support the "Design for sheet-bulk metal forming" approach, relevant and existing 
manufacturing knowledge is required and needs to be acquired. In this context, knowledge acquisition 
methods can be distinguished as direct and indirect knowledge acquisition methods, which both make 
use of experts who can either enter their knowledge in expert systems (direct knowledge acquisition) or 
are interviewed by knowledge engineers (indirect knowledge acquisition) who in turn do the work of 
entering and characterising relevant knowledge (Spur and Krause, 1997). However, for new 
manufacturing technologies, those experts are simply not existent.  
In contrast to that, a third knowledge acquisition technology can be found as automatic knowledge 
acquisition, which aims at "generating knowledge from data" using data mining methods. Such data is 
mainly created by experimental and numerical parameter studies during the development process for 
new forming technologies such as sheet-bulk metal forming.  
To support such parameter studies, process developers make use of the Design of Experiments 
methodology, which ensures a better exploration of the available parameter space, thus producing a 
solid database for further investigations (Siebertz et al., 2010). The parameter space is setup up by all 
product features that are defined by the product developers. After setting up a design of experiment, the 
parameter studies are carried out. The results of those studies are stored in a database (e.g. Microsoft 
Excel spreadsheets), this marks the point for manufacturing experts to evaluate the data and further 
develop an understanding of the new manufacturing technology. 
The self-learning process (see Figure 2) is the last step of discovering knowledge in the database. After 
the creation of the database from parameter studies, the self-learning process implemented in an 
engineering workbench creates metamodels. Those models describe the underlying data by introducing 
a relation between the input values (in this case; product features) and the output values (in this case; 
product properties). As Breitsprecher and Wartzack (2012) point out, the term self-learning is used 
because every time the database is updated, a new metamodel creation is initialised. Moreover, different 
types of metamodels compete against each other and the one, which describes the data best, is used for 
the prediction of product properties. Hence, the metamodels used for description are always up to date 
and use all currently available data (Breitsprecher and Wartzack, 2012). 

 
Figure 2. Knowledge discovery process (Wartzack et al., 2017) 

2.3. A self-learning engineering workbench - SLASSY 
As mentioned before, the objective of the research project is to develop an engineering workbench to 
support product developers in sheet-bulk metal forming. This engineering workbench is called SLASSY 
(German acronym for self-learning assistance system). It supports product developers in the design 
process of sheet-bulk metal formed parts. It consists of two main modules. One module dedicated to the 
synthesis of new part designs, the other dedicated to analyse product properties of the current part 
design.  
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Figure 3 shows the user interface of SLASSY's synthesis tool. Product developers can configure their 
sheet-bulk metal formed parts and can set all available product features. By making use of the previously 
described data mining algorithms, metamodels run an analysis of the current part design and calculate 
product properties based on the current part design. Metamodels are created from the database, which 
holds all the data from the parameter studies. The whole analysis process is shown in Figure 4. 

 
Figure 3. Design synthesis tool of SLASSY 

The design analysis tool from Figure 4 makes use of the current part design (set by the product 
developer) in the design synthesis tool. Moreover, the knowledge base, which consists of all available 
data from the parameter studies, is tapped by making use of the generated meta-models. Together both 
parts are used to predict product properties within the design analysis tool (Wartzack et al., 2017). 
Product developers are able to see the output for the relevant product properties. Beforehand, the 
relevant product characteristics to be analysed were given by manufacturing experts. This process can 
happen directly or indirectly via the knowledge engineer. 

 
Figure 4. Design analysis tool of SLASSY 
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2.4. Current models for knowledge representation 
The key models for knowledge representation in the engineering workbench are meta-models. Those 
meta-models can be characterised by their specific mathematical formulation. Figure 5 shows the 
currently used mathematical constructs for meta-models. 

 
Figure 5. Current metamodels implemented in SLASSY 

Two of the four used metamodel types make use of mathematical regression. On the one hand linear 
regression, which uses a straight line to interpolate between data points in the database. On the other 
hand polynomial regression that approximates data points by a polynomic curve of arbitrary order.  
The other two metamodel types are based on an algorithm called M5 algorithm. Rule-based as well as 
tree based metamodels make use of piecewise defined linear models. The M5-algorithm supports the 
definition of distinct pieces where linear models are set up and provides the utilization for the prediction 
from rule or tree based models (Quinlan, 1992). 
Current metamodels only support the prediction of product properties for the whole part level, as can be 
seen from Figure 4. For the future, product developers and manufacturing experts need predictions with 
a much higher level of detail. Therefore, the resolution of the used data needs to be denser and more 
data is necessary to generate metamodels. Furthermore, those models must be capable of predicting 
product properties on local level. Current generation metamodels are not able to handle those amounts 
of data (Sauer et al., 2017). Research shows that we need to look for other data mining algorithms to 
generate metamodels that are able to predict product properties for every position (local level) on the 
current product design. 

2.5. A deep learning approach to metamodels 
As mentioned above, current metamodels like linear regression or M5-trees cannot handle the amounts 
of data needed for predicting part properties on local level. In order to overcome this shortcoming, a 
current trend in machine learning is trying to employ neural networks for the purpose of prediction 
models. Neural Networks are complex mathematical constructs that are modelled according to the 
human brain. They consist of an arbitrary number of neurons. Those neurons are arranged in an again 
arbitrary number of layers. First, the input layer, which represents the inputs of any neural network. 
Secondly, there can follow one or more hidden layer, which do not have any input from the outside but 
are only connected to neurons from the input layer. In these layers, highly nonlinear information is 
processed and forwarded to the next layer. After one or more hidden layers, an output layer follows, 
which represents the prediction of the neural network.  
As Hoffmann (1993) points out there are types of neural networks, which do not have any hidden layers. 
Those types are simply called perceptrons. On the left side in Figure 6, an exemplary structure of a 
neural network is described graphically. When the neurons of each layer are fully connected to the next 
layer in the neural network, we speak of a feed forward type of neural network (Hoffmann, 1993). 
From the graphical structure of a neural network, one can always derive the mathematical formulation 
of the network. This can be formalized as a large matrix of functions, which is graphically described in 
Figure 6 on the right hand side. This fact shows why predictions from neural networks run much faster 
on parallelized hardware. If we look deeper in one neuron of a neural network, we get the graphical 
description from Figure 7. 
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Figure 6. A simple neural network with one hidden layer 

As described by Witten et al. (2017) we see inputs from the left hand side into the Netinput function, 
which processes all previously mentioned inputs. Moreover, one can define it from the outside. In most 
cases, this is a simple weighted summation function. The value of the Netinput function propagates 
further to the activation function. This is the part where the neuron "fires", similarly to the neuron in the 
human brain. The activation function upswings when the processed values pass an arbitrary threshold 
value. After this is done, external factors, such as the node bias, can manipulate the propagated values. 
Lastly, the Output function processes its input and returns the final output of the neuron (Witten et al., 
2017). 

 
Figure 7. Internals of a neuron in neural networks 

Coined by Goodfellow et al. (2016), Deep Learning extends the ideas of neural networks. To be more 
precise, it defines special types of networks as Deep Learning networks. For this contribution, we speak 
of deep learning when neural networks with two or more hidden layers are used. On the other hand, 
deep learning means that vast amounts of data are processed within the training and prediction processes 
inside the neural networks (Goodfellow et al., 2016). This is exactly the case for the efforts made in this 
contribution. 
Moreover, the computational power of high performance computing systems is on a continuous rise. 
With the adoption of graphical processing units as accelerators, the parallel deep learning methods also 
increase in speed and accuracy (LeCun et al., 2015). 
The datasets that are used for deep learning have special requirements. First, they need to be as big as 
possible. For neural networks, one needs much more data to train the metamodel, than for relatively 
simple interpolation tasks (Kruse et al., 2015). As a starting point, hundred times the number of used 
input neurons is a minimum requirement for creating significant metamodels. 
Second, the dataset needs to have a structure, which allows to derive an input-output relation, i.e. a 
structured dataset based on which the deep learning neural network can be trained. In many cases, 
especially when neural networks are used to classify data, it needs to be structured first. Third, the 
dataset must support batch processing. An ideal dataset is a structured table in a machine-readable 
format, e.g. Excel spreadsheets or comma separated values. 
In order to optimize not only the dataset used for deep learning, but also to increase the prediction quality 
of the used metamodels, one can adopt the ideas of Zoph and Le (2016). This approach tries to optimize 
the neural network structure to represent the input-output-correlation with more precision with respect 
to a predefined performance value, e.g. standard deviation between ground truth and predicted value 
(Zoph and Le, 2016). 
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3. Deep learning in sheet-bulk metal forming 
For sheet-bulk metal forming, we employ above-mentioned concepts to create a metamodel for the 
prediction of local level product properties. Based on a parameter study of a locking teeth model we use 
deep learning to create a metamodel for the prediction of the TEPS, an acronym for total equivalent 
plastic strain. The total equivalent plastic strain is one indicator for the formability and thus for the 
manufacturability of the current part design. It is used to explain the maximum strain a given part design 
can produce. However, it is not the whole story for describing the manufacturability. This is always a 
multiobjective system, where many different goals need to be respected.  
By using all available local level data of the parameter study, we create a metamodel that is able to 
predict local level product properties like the TEPS, for current part designs proposed by the product 
developer. Figure 8 shows this approach in detail. 

 
Figure 8. Approach for prediction of product properties on local level  

             (Sauer et al., 2017) 

In the process of creating the metamodel, we use the whole parameter study as the database. We train 
our deep learning model based on this data. For evaluation purposes, we split the data in training and 
test data. Based on the test data, we evaluate the quality of the prediction. For this purpose, the R2-
Coefficient of Prognosis (R2-COP) is used (Most and Will, 2008). Furthermore, we calculate the 
standard deviation for the test data. 

3.1. Dataset 
The process of creating the dataset used for this contribution can be described as the following steps. At 
first, we need to identify product properties that are relevant to the considered output value. On the left hand 
side in Figure 9, one can see two chosen properties of a primary design element, formed by sheet-bulk metal 
forming. In this case, we use the height and breadth of a locking tooth. Both properties are then sampled in 
a Latin Hypercube Sampling (LHS) to create a trial design. This trial design defines the design of 
experiment. As McKay et al. (1979) point out, one characteristic of Latin Hypercube Sampling is that, with 
respect to a Gaussian distribution every row and each column of the design space gets a trial point. The 
design space can be defined as all possible product property configurations a product developer can define. 

 
Figure 9. Latin hypercube sampling in design of experiments 
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After setting up the design of experiments, the simulations need to be carried out by using the finite 
element method. Every design of the created trial design, the so-called variant of a parameter study 
needs to be evaluated to create the complete parameter study. In this case, the parameter study consists 
of 20 different variants of a locking teeth design. The created data is arranged in the human and machine-
readable comma separated values format. Those 20 different variants were previously run inside a 
forming simulation. The different variants of the parameter study were set up by using Latin Hypercube 
Sampling. 
For every variant, the complete node data of the mesh is stored for each node separately. On top of that, 
every timestep of the iteration also creates a csv-file for all available nodes in the mesh. The used FEM 
meshes have around 10,000 data points. At each node, we extract the corresponding total equivalent 
plastic strain value for further analysis. Furthermore, every node has a distinct node ID to identify 
corresponding nodes between the time steps of the simulations. Table 1 shows the obtained data 
structure that is created by the forming simulation and later used for the training of metamodels. 

Table 1. Resulting data structure for sheet-bulk metal forming parameter study 

 Node ID X-coordinate Y-coordinate Z-coordinate TEPS 

Type Integer Floating point number 

 
It can be seen, that the first column holds the specific node id number to identify each node. The next 
three columns hold the coordinates of each node based on the coordinate system used inside the forming 
simulation. In the last column, the desired output, in this case the TEPS is stored. By using this structure, 
it is easier to run the steps of the training process of the metamodel. In addition, we have directly 
modelled the input-output-correlation inside the dataset. 

3.2. Results 
After splitting the data using a train-test-split and training the metamodel with the split training data, we 
calculate the overall quality of prediction based on the following equation. 
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Predicted values are arranged in a vector called yp. Its mean value is calculated and described by the 
barred yp. The true target values of the test samples are stored in the vector yt. Following the same 
scheme as the predicted values, barred yt represents the mean of the true target values. On the other 
hand, the standard deviations of prediction and the true target are described by the sigma variables. The 
total count of data samples is represented by the variable n. The main advantage of the calculated 
performance value is its scalability to the size of the data, by employing the total number of samples 
and calculating their performance with respect to their root mean squared error (Most and Will, 2008). 
Based on this measure, we calculate the R2-COP to obtain the prediction quality for the deep learning 
metamodels for local level prediction. For all variants inside the parameter study, the resulting R2-COP 
value does not decrease below 85%. This means that a previously unused position is predicted correctly 
with a chance of 85%. Moreover, the resulting root mean squared error for the total equivalent plastic 
strain value are around 0.2-0.3. 
For training our models, we shuffled the dataset and used a 20-80 test-train data split. During the 
training, we tried to avoid overfitting by adopting two methods. Overfitting describes an effect where 
the model is only adapted to the used training data in a way, where it is not able to predict previously 
unknown data. On the one hand, carefully watching the training and test accuracy to detect when the 
training accuracy converges and stop the training process. If the training accuracy converges and training 
continues, the model is more likely to be overfitted. Preventing this is key in creating good prediction 
models for previously unknown data points. The second method to prevent this from happening in the 
process of determining the neural network structure, one can apply dropout techniques introduced to 
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obtain prediction models with good performance in previously unused new data 
(Srivastava et al., 2014). As a conclusion, it can be seen, that the overall prediction quality is very good 
and shows potential for a local level description of target values. This led us to the conclusion of 
adopting it in the general workflow using the SLASSY engineering workbench. 

4. Extending the self-learning engineering workbench SLASSY 
The existing workflow in SLASSY can be described as the following steps. First, the product developer 
used the synthesis part to create a new design. During this, developers can define all necessary geometric 
values for a given design of a primary design element. Those elements provide the functional parts of 
the sheet-bulk metal formed part. After that, a global analysis can be made. Previously product 
developers got only one value for their current design. This means that they get no feedback where on 
the design the predicted value arises. This means, they had to guess when they moved back from the 
analysis to the synthesis of a better design. By now extending this workflow through adding the local 
level metamodel tool, they now can evaluate the desired product properties on the local level of the 
current part design. Henceforth this increases the functionality of the "design for manufacturing"-
engineering workbench SLASSY. Taking into account the possibilities provided by the above 
mentioned methods like deep learning and local level predictions. In this context, the new workflow 
extends the previous one, inasmuch as allowing a local level prediction of product properties. So far, 
product developers had the possibility to get a prediction for their whole part designs inside the analysis 
part of SLASSY. Now they are able to get local level product properties by employing the following 
new workflow. 
Product developers, after their initial synthesis of the design, can now use the analysis tool of the 
engineering workbench to make use of the local metamodel tool. Implemented in the workflow, as 
shown in Figure 10 on the right hand side, is a second lane to generate local metamodels from the 
database. Based from the above-mentioned parameter studies, one monolithic database holds all 
available data for the training of the local metamodels. In the event of a completely new part design, the 
algorithm selects the closest possible metamodel for the current new design. 

 
Figure 10.   Workflow for the product developer 

The prediction always provides its R2-COP value and the corresponding mean standard deviation, to 
give the product developers a feel for the prediction quality. Based on the resulting prediction values, 
the product developers can now make assumptions about the resulting product properties and decide to 
optimise the design with further use of local metamodels. 
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Figure 11 shows the interactive user interface that is created by the local metamodel tool. By directly 
interacting with the graphical user interface (GUI), the product developers can see the resulting values 
in the prediction. Moreover, the model itself can be colorized in form of a heat map for clearly displaying 
possible critical areas, which need more attention based on their local product properties. Based on the 
heat map approach, product developers get a feedback regarding the bigger picture inside their current 
product design and directly see the distribution of the product properties in local part areas. 
Figure 11 shows the resulting dialogue component. This is an important building block for the 
engineering workbench. As mentioned by Altenkrüger and Büttner (1992), the visual feedback and the 
possibility to modify the design directly is an important part of engineering workbenches or expert 
systems. The presented approach implements those ideas. The user can select the different locations of 
interest and the workbench provides him with a prediction for the currently selected point inside of the 
engineering workbench. Given this information, product developers can go back to the synthesis part of 
SLASSY and create a new part design. 

 
Figure 11.   Realisation of dialogue component in the engineering workbench 

5. Resume and outlook 
The increasing need for resource efficiency and lightweight design puts product developers under 
immense pressure. In this context, the need for parts manufactured by manufacturing technologies with 
steadily increasing complexity dictates the use of engineering workbenches, which enable product 
developers a quick and reliable assessing of the effects of design changes on the manufacturability of 
their designs. Besides more classical expert systems like the ones described by Boothroyd (1996) which 
focus on providing practical knowledge at the time of designing parts. The self-learning engineering 
workbench SLASSY provides prediction methods for product properties based on the current design. 
Previous works in this domain focused on the prediction of whole part level (global) product properties, 
the presented approach makes it possible to predict product properties on local function element level. 
Thus, the presented work overcomes the shortcomings of existing works, which were limited to the 
prediction of product properties in sheet-bulk metal forming for the whole part. As mentioned above, 
this was a logical consequence of the used level of detail in the database and the used methods for 
generating metamodels for prediction. 
By employing the whole database approach for training deep learning neural networks, we try to create 
prediction models for the local level. This is made possible by a very high level of detail in the data on 
the one hand. On the other hand, new data mining methods are employed. Especially neural networks 
show their suitability for this. In the proposed approach, they are extended by adopting deep learning 
for their structure design. By using hidden layers and adjusting the properties of the neurons, we create 
neural networks capable of predicting the total equivalent plastic strain of sheet-bulk metal formed parts 
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with respect to the R2-COP value and the mean standard deviation. Both performance values undermine 
the suitability of this approach for the prediction of product properties on local level, e.g. the primary 
design elements that later provide the key functionality of the designed sheet-bulk metal formed parts. 
The existing workflow inside the engineering workbench SLASSY is extended by a local metamodel 
tool. This tool comprises a dialogue component and thus supports the design process in predicting local 
level product properties. For the further development of the new manufacturing technology sheet-bulk 
metal forming, this prediction represents a key element to support the further research of manufacturing 
scientists and production engineers. 
Beside this, the presented methods show potential for applications in other issues of the project's 
research, e.g. tribology. Hetzner tried to improve sheet-bulk metal forming processes by local 
adjustment of tribological parameters (Hetzner et al., 2011). It is conceivable that the local metamodels 
can be applied in different types of disciplines. One strong requirement is however the availability of 
different data with a relatively high level of detail. For rapid prototyping purposes, this can be created 
by numerical parameter studies, which are later validated by mechanical real world analysis. 
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