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Abstract 
This paper presents a prescriptive approach toward the integration of value and sustainability models in 
an automated decision support environment enabled by machine learning (ML). The approach allows 
the concurrent multidimensional analysis of design cases complementing mechanical simulation results 
with value and sustainability assessment. ML allows to deal with both qualitative and quantitative data 
and to create surrogate models for quicker design space exploration. The approach has been developed 
and preliminary implemented in collaboration with a major aerospace sub-system manufacturer. 
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1. Introduction 
Aircraft development is a long lead time project starting with assumptions of requirements that mature 
and are adjusted during the projects, according to Set-Based Concurrent Engineering (SBCE) Sobek et 
al. (1999) approaches. The long lead time creates a challenging situation for sub-system and component 
manufacturers asked to design new solutions with requirements uncertainty while concurrently aiming 
at increased design robustness, weight reduction, costs reduction, and product performances within 
acceptable boundaries. Traditionally Multi-Disciplinary Design Optimization (MDDO) approaches 
have been used to address the design challenge of considering a rather open set of feasible design 
solutions rather than focusing on a specific solution point in the design space.  
Recently, researchers in the area of Value Driven Design (VDD) and Sustainable Product Development 
(SPD) have recognised the need to include models for value and sustainability assessment for early 
design concept evaluation, in order to expand the range of early design analysis to more than product 
feasibility and technical performances (Ross et al., 2004; Steiner and Harmon, 2009; Bertoni et al., 
2015a; Bertoni et al., 2016; Hallstedt, 2017). However, it is still a challenge to model the link between 
the mechanical performances of a range of design variants, the value generated for the stakeholders and 
the derived sustainability implications.  
The embodiment and assessment of many design variants in early design is increasingly enabled by the 
application of Knowledge Based Engineering (e.g. Verhagen et al., 2012; Quintana-Amate et al., 2017). 
Although value and sustainability-related considerations suffer from a critical lack of data to be 
integrated into automatic systems for design assessment and would benefit from a solution capable of 
integrating them into the design analysis. Such solution would eventually render a situation in which 
value and sustainability could be more easily assessed or predicted to support engineering design 
decision-making. The integration of multidimensional analysis into a unique decision support model has 
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been proved to be possible for many different industrial contexts, thanks to the use of Machine learning 
(ML) techniques and big data analytics (e.g. Akhavian and Behzadan, 2013; Bertoni et al., 2017). 
However, no application exists yet concerning the integration of value and sustainability assessment 
models in a combined approach for engineering decision support in early design.  
The paper presents a prescriptive approach toward the integration of value and sustainability models in 
an automated decision support environment enabled by the use of machine learning techniques. The 
approach aims to support cross-disciplinary decision making in the early design stages and has been 
developed and preliminary implemented in collaboration with a major aerospace sub-system 
manufacturer. Its rationale and application are described in the paper through the case study of the design 
of a new generation Turbine Rear Structure (TRS) for commercial aircraft engines.  

2. Research methodology 
The approach presented in this paper is the result of a research effort that can be framed in the Design 
Research Methodology (DRM) (Blessing and Chakrabarti, 2009). The work concerns to a large extent 
the third stage of the methodology, presenting a prescriptive model addressing the previously identified 
design challenges. The work also includes an implementation of the model in a controlled environment 
to preliminary evaluate both the model per se and its application environment. The proposed solution 
builds on previous research clarification and descriptive study concerning issues and challenges on value 
and sustainability assessment in the area of aerospace product development (findings previously 
published by Isaksson et al., 2015).  
In the frame of the DRM methodology the work has been conducted following an iterative look-think-
act routine (or “learning circles”) in which the researchers tested a model with practitioners in real 
situations, gain feedback from these experiences, modify the model as a result of this feedback, then try 
again; similar to what described by Avison et al. (1999), and Coughlan and Coghlan (2002). 
The approach developed is presented in the paper based on a single case study application, although the 
problem identification, the requirements definition and the rationale and logic of the prescriptive solution 
can be generalized to different industrial cases. The data used and visualized in the case study have been 
partially generated through computer-based simulations and finite element analysis on real design cases, 
those data were further complemented with realistic but artificial data to avoid issues of industrial secrecy. 

3. Towards the application of machine learning in value driven design and 
sustainable product development 

Development teams are used to model engineering problems and to use models results for decision 
making. Finite Element Analysis, Computational Fluid Analysis and Modal Analysis are traditional 
modelling methods that are applied to evaluate the performances of a concept before initiating its 
physical development. The integration of less quantifiable or “fuzzy” aspects, such as value and 
sustainability, in a model-based decision support system introduces, however, a higher level of 
uncertainty, given by the multidisciplinary nature of the data, embedding qualitative evaluation difficult 
to be supported by computer-based simulation techniques, since lacking the necessary input data.  
In the aerospace industry products have typically a life cycle of many decades. Here design engineers 
need to understand the multidisciplinary implications of decisions made in early design stages, that will 
impact lifecycle value and sustainability performances for many decades ahead.  
From a VDD perspective, this challenge has high implications in the process of linking stakeholders’ 
needs to technical requirements. Commonly quantitative data are used for the estimation of cost and 
lead time of specific design solutions. At the same time, qualitative data drive the design analysis for 
what concerns the assessment of the value of new functions, and for what concerns potential synergies 
in design, manufacturing or servicing (e.g., customer support, product platform commonalities, 
scalability of solutions) (Ross et al., 2004; McManus et al., 2007).  
From a SPD perspective, there is a need for an improved understanding of how a design solution 
influence social- and environmental sustainability aspects. To understand that, it is necessary to identify 
which socio-ecological indicators are relevant for a product throughout its whole lifecycle, i.e. from raw 
material acquisition to disposal phase. Sustainability should not automatically be seen as negative 
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impacts and increased risks but also as an opportunity for designing more sustainable solutions for the 
product’s lifecycle and thereby differentiate from competitors (Schulte and Hallstedt, 2017). Material 
selection is one example of a design feature that needs to be decided early and has a direct impact on 
downstream decisions, e.g., the selection of manufacturing processes and end-of-life solutions (Giudice 
et al., 2005). Unavailability of materials may lead to costly re-investments and re-design of complex 
products or a deteriorating market. The challenge is to see the connection between short-term and long-
term sustainability risks and to understand the connection between sustainability risks and other design 
variables. The time perspective for the risks is often vague for design teams dealing with products with 
long life-span. Those need to identify, and possibly quantify, the long-term risks of present choices.  
The consequence is the weakness in current decision situations, given by the inability to clarify and 
understand the “value” and “sustainability” implications compared to, for instance, the mechanical 
performance of concepts. Models are not available, or mature enough, to integrate those two dimensions into 
the traditional decision-making models. In other words, design engineers have poor model support to answer 
questions like: “Which is the most valuable component to develop?” or “How would its sustainability profile 
looks like?” Questions that need to be answered before committing high resources on a development project.  
In such scenario, extensive data analysis enabled by machine learning (ML) algorithms comes into play 
as a possible solution to support the prediction of value and sustainability performances. ML allows the 
identification of hidden correlations on existing sets of multidisciplinary and multidimensional data, 
allowing the creation of predictive models that can reduce the uncertainty of decision makers facing the 
challenge of estimating value and sustainability performances with uncertain and incomplete data. The 
creation of predictive models, capable of dealing with heterogeneous variables to be integrated into a 
knowledge-enabled engineering environment, enables the possibility of simulating different complex 
scenarios with limited consumptions of time and resources, thus allowing a larger exploration of the 
design space, given the condition of keeping an acceptable degree of reliability. From a ML perspective, 
this means developing approximation models (also known as response surface models, surrogate models 
and meta-models (Mack et al., 2007)), allowing engineers to approximate time-consuming simulations 
by mimicking the complex behaviour of the underlying simulation analysis. Statistical methods such as 
Kriging and polynomial methods are popular to construct surrogate models dealing with both 
quantitative and qualitative data, thus eventually capable of including those value and sustainability data 
non-numerically quantifiable. Furthermore, ML methods such as support vector machines, tree-based 
models, artificial neural networks and radial basis functions have been used to construct response models 
in similar cases (e.g. Queipo et al., 2005; Shan and Wang, 2010; Dasari et al., 2015). 
The approach using ML as an enabler for value and sustainability assessment in a knowledge-based 
engineering system addresses the challenges described in this section, thus focusing on the integration 
of the finding from three research areas, namely SPD, VDD, and ML. Based on the industrial problem 
description, the state of the art of the research fields, and previous research (Isaksson et al., 2015), three 
criteria to judge the usability of the described approach have been identified to verify the applicability 
and effectiveness the proposed approach. Those are: 

 Ability to manage value and sustainability issues that are multi-dimensional, often context 
dependent and difficult to condense into a unified way of modelling. 

 Ability to aggregate value and sustainability evaluation, encompassing both qualitative and 
quantitative data, in a unique model. 

 Ability to quantify uncertainty that is hidden behind assumptions used in the evaluation of value, 
thus not providing a false impression of accuracy in the results. 

4. An integrate scenario for value and sustainability assessment in early design 
enabled by machine learning  

The approach exemplifying how machine learning can support value and sustainability evaluation in 
early design is summarized in this section. The section has the double objective of presenting the novel 
approach for ML application in VDD and SPD and to describe the most recent application of the approach 
in aerospace product development. The section initially describes the findings related to the definition of 
the ideal set of value and sustainability criteria identified in the study, and later describes how machine 
learning has been applied to a subset of them to provide decision making support in early design. 
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The example is based on the development of a Turbine Rear Structure (TRS). The TRS is one of the 
larger static components of an aircraft engine and its main functions are to redirect the outgoing flow 
and transfer different loads. The design of a TRS is a complex task, and the early design phase includes 
high level of uncertainty in requirements, rendering an open design space. Consequently, a high number 
of multi-disciplinary studies is needed, focusing, for instance, on aero performance, mechanical 
functions, “producibility”, together with the value and sustainability assessments. Commonly different 
studies are run with specific design objectives, where the design engineers simulate specific product 
features, e.g. engine mount position, number of struts. These studies share a few common design 
parameters, e.g. thermal zones, even though they are focused on different design objective for the TRS. 
The analysis of each design objective provides an idea on how design parameters affect the performance 
of the engine in terms of quality, cost, weight, etc. The challenge is to explore how the various design 
objectives of the TRS studies relate to each other. This becomes evident when the focus is on 
understanding how value analysis relates to sustainability assessments and what is the correlations of 
both of them to the mechanical analysis studies. 

4.1. Definition of value criteria 
The first step of the value modelling activity was to identify the value criteria more relevant for the 
specific TRS case. The generic definition of families of criteria relevant for aerospace product 
development has been discussed in a number of publications in the systems engineering literature (Ross 
et al., 2004; Steiner and Harmon, 2009; Bertoni et al., 2011). Concerning the development of a TRS, a 
previous work by Bertoni et al. (2015b) has highlighted a framework of reference for value model 
development encompassing qualitative and quantitative criteria. Such framework has been used as 
starting point for identifying specific criteria that needed to be quantified in the TRS development 
example. Figure 1 shows the value criteria identified in the study. The criteria are divided into two main 
families: those quantifiable numerically encompassing operational performances, production and 
servicing, and those quantifiable qualitatively, through the use of categorical variables, encompassing 
“ilities” and “commonality”. A critical difference between the two families relies in the context 
dependency of the methods used for their computation: while quantitative criteria can be computed using 
numerical functions that are context independent, and thus generalizable (e.g. the cost of raw material does 
not depend on its final application), qualitative criteria assessment is based on judgement dependant from 
the specific industrial context in which a new design is developed (e.g. the commonality in technology is 
dependent from the technology development of a specific company at a specific moment in time). 

 
Figure 1. Value criteria identified in the study 

Value Criteria

Quantitative

Operational 
performances

Fuel cost saved

CO2 Emissions saved

Production

Cost of raw material Cost of 
Manufacturing

Cost of Casting

Cost of Additive 
Manufacturing

Cost of feasible 
welding technologies

Servicing

Maintainability

Qualitative

“Ilities”

Survivability

Scalability

Commonality

In technology

In product 

In system 
architecture
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In the TRS study, both families of criteria have been taken into consideration for quantification. 
The output of early simulations has been directly used as input for the computation of the 
quantitative criteria by the development of specific functions. The computation of qualitative 
criteria is instead based on the possibility to access specific databases to compute the value of 
categorical variables. The following Table 1 describes how the quantitative value criteria have been 
computed in the TRS case, and how qualitative value criteria can be computed based on data 
availability. The Table lists the input considered either from simulation or external input, and the 
quantification method applied.  

Table 1. Quantitative and qualitative value criteria considered in the TRS case 

 

4.2. Definition of sustainability criteria and indicators 
To understand how a design solution influence social- and environmental sustainability aspects, and 
vice versa, it is necessary to identify which socio-ecological indicators that are relevant for a product 
throughout its whole lifecycle. When these indicators are identified there need to be an understanding 
of the correlation and the relationships between the sustainability indicators and the VDD criteria, as 

QUANTITATIVE VALUE CRITERIA

Criteria Input from simulation External data‐source Specific Methods

Fuel cost saved ‐ TRS mass

‐ Aircraft fuel consumption model (ICAO)
‐ Aircraft weight‐fuel consumption relation
‐ Expected life
‐ Cost of fuel

‐ Regression analysis on ICAO data

CO2 emission saved ‐ TRS mass ‐ CO2 per kg of fuel (ICAO) ‐ Linear relation with fuel reduction

Cost of raw material ‐ TRS mass ‐ Percentage of scrap from production

Cost of Casting
‐ TRS mass

‐ Cube surface area
‐ Shape complexity

‐ Casting practice database
‐ Plant and overhead costs estimates

‐ Activity‐based costing

Cost of Additive 
Manufacturing

‐ TRS mass
‐ Additive manufacturing practices
‐ Plant and overhead costs estimates

‐ Activity‐based costing

Cost of feasible welding 
technologies

‐ Weld length
‐ Weld thickness

Welding technology capabilities 
(EWB/TIG/Plasma/LBW)

‐ Regression analysis
‐ Activity based costing

Maintenability ‐ TRS mass Life‐limited parts model (Seemann et al., 2010) Data mining on maintenance database

QUALITATIVE VALUE CRITERIA

Criteria Proxy parameters Data to be accessed Method to be applied

Survivability

Component behaviour in relation to:
‐ Unexpected higher temperature

‐ Fly into ash cloud
‐ Ice formation

‐ Database of performances during tests
‐ Database of unexpected behaviour during 
operation

Data mining

Scalability

‐ No.of component to modify if engine 
diameter changes
‐ Efficiency of components in case of 
engine weight change

‐ Number of constraint in CAD models

‐ Tolerances and critical level in FEA ‐ Finite element analysis

Commonality in technology

% of reuse of:
‐ Welding fixtures
‐ Qualified welding
‐ Tested material

‐ TRL level of technology

‐ Database of qualified welding

‐ Database of tested material ‐ Data mining

Commonality in product
‐ % features shared with other 
components

‐ % of raw material already in use

‐ Database of used features
‐ Database of material used ‐ Database search

Commonality in system 
architecture

‐ Engine by‐pass ration
‐ Engine overall pressure ratio
‐ Engine thrust to weight ration
‐ Engine electrical generation

‐ Engines performances and feature database ‐ Database search
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well as, the sustainability indicators and the design variables, to be able to develop ML algorithms and 
support design analysis.  
In previous research sustainability criteria have been developed for the case company’s products and 
processes, a so-called sustainability design space (Hallstedt, 2017). The sustainability design space as 
described by (Hallstedt, 2017) consists of three parts: i) Strategic Sustainability Criterion (SSC). The 
ideal long-term sustainability target and something to strive for is based on a rigorous definition of 
sustainability using overarching sustainability principles at the basis of a backcasting perspective 
(Missimer, 2015; Broman and Robèrt, 2017); ii) Tactical Sustainability Design Guideline (TSDG). The 
prioritized sustainability aspect that supports development towards the related long-term strategic 
sustainability criterion; iii) Sustainability Compliance Index (SCI). A metric that states the levels of 
compliance for each of the strategic sustainability criteria as a means to operationalize the use of the 
criteria strategically and tactically. The three parts SSC, TSDG and SCI are used together, where the 
SSC enables a stable definition of what is considered sustainable, e.g., no critical materials used 
according to the critical material lists. In line with Arena et al. (2009), these criteria need also to be 
measurable in order to be made operable for a company. A challenge is that operable metrics need to be 
applied in a more detailed context. The TSDG, e.g., reduces (in %) critical materials for product 
components and/or its production, constitutes a necessary description of the sustainability aspects in a 
comparison of alternative design solutions. To assess to what degree a product concept performs in 
relation to a sustainable solution, an SCI has been developed (Hallstedt, 2017), consisting of qualitative 
sustainability levels: 9, 6, 3, 1.  
To have a full picture of the most important sustainability aspects of a product lifecycle, the SSC’s need 
to be identified for each life-cycle phase with an eye to each of the eight sustainability principles. For 
the case company, long-term SSC’s were identified as potential contributions to a misalignment of 
sustainability principles for each life-cycle phase. In total 43 SSC’s were identified and examples of 
these are presented in Hallstedt (2017).  
To cover a full picture of the sustainability impact of, for example, alloys’ extraction and acquisition, 
information about restricted chemical usage, land degradation, energy usage, and violations of 
human’s needs are important factors for decision making. However, detailed information and data in 
the early design phases from suppliers are very difficult to get, e.g., data regarding usage of materials 
that contain or result in chemicals that are included in the REACH-candidate list (European 
Commission, 2006); and, data regarding raw materials and chemicals and/or its manufacturing sites 
used that cause physical degradation of the environment. These types of sustainability issues can 
change and be improved later in a dialogue session with the suppliers. Instead, the so-called leading 
criteria divided into SCI levels for each life-cycle phase from the Sustainability Design Space is 
developed and selected to represent the most important sustainability aspects that can be accomplished 
within the time-constrained early design situation. The leading criteria support the product design 
team in what to prioritize when doing a first sustainability assessment for guiding decisions and they 
give enough guidance for the product design team to down-select a concept solution (Jaghbeer et al., 
2017). The characterizations of the leading criteria are: i) data and information availability for the SCI 
judgement; ii) coverage of sustainability dimensions (social, environmental and economic/business 
perspectives); iii) aspects that affect the concept design directly or indirectly and that will be hard to 
change later on (or more costly). For each leading criteria sustainability indicators have been defined. 
(Hallstedt and Isaksson, 2017). In Table 2 the sustainability indicators for the case company, 
representing early life cycle phases of a product, are presented. The indicators are defined as 
measurements or facts (qualitative or quantitative) that indicate the state or level of the leading 
criteria. A suggested interval from acceptable to minimum level (worse state) including a target value 
for the case company has been suggested for each leading criterion. These intervals are guided by 
information and data found in documents such as sustainability reporting guidelines, environmental 
sustainability index report, strategies and guidelines from Advisor Council for Aviation Research and 
Innovation in Europe (ACARE, 2011). 
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Table 2. Indicators for each leading criterion at the case company. A first suggested interval, 
        from acceptable to minimum level (worse state) including a target value, for the case 

company is presented 

 

4.3. Machine learning algorithm approach and application 
Despite the fact that computational tools and methods have been developed to support design engineers 
in decision making in early phases, the design of aircraft still remains complex due to multidisciplinary 
objectives, resulting in long project times from the conceptual phase to the product delivery (Min et al., 
2017). For instance, simulations can take even weeks depending on the complexity of the problem of 
interest. Furthermore, multi-disciplinary analysis includes several tasks which may require a large 
number of simulations (hundreds or thousands). Therefore, there is a need to speed up the procedure of 
analysis. This is where machine learning plays a key role to build approximation models, also called 
supervised regression models or surrogate models, that can mimic the original system in order to 
minimise simulations and cost needed to investigate the design space.  
In the design of aircraft, surrogate models have been used widely to approximate the expensive simulation 
models (Min et al., 2017). The generation of approximation models requires a dataset of inputs and known 
outputs. The known outputs are produced from simulations. Many studies have proven the effectiveness 
use of surrogate models to reduce computational cost for design optimization, design space explorations 
and sensitivity analysis. For instance, Huang et al. (2011), have built a surrogate model that approximates 
the computational mechanical analysis of engine components to reduce the computational cost. Jeong et 
al. (2005), have used data mining approaches for aerodynamic design space to identify the effect of design 
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parameters on design objectives. Here information helped design engineers to find out the final design 
from non-dominated solutions of multi-objective problems. Furthermore, it also helped to screen the 
design space and to identify the rationale of the better performances of the optimal solution (Jeong et al., 
2005). Mack et al. (2007), presented a use case about a compact liquid rocket radial turbine using surrogate 
models for design optimization to maximize the turbine efficiency while minimizing the turbine weight.  
Concerning the TRS case simulation data from design have been used to build surrogate models using 
linear regression, support vector machine, and tree models (i.e. M5P, Random Forests) to explore the 
design space (Dasari et al., 2015). The previously identified value and sustainability criteria became part 
of a unique dataset including simulation data from design of experiments (DOE). The dataset 
encompassed both quantitative and qualitative data. The data available in the datasets were then used to 
construct surrogate models to analyse the relationships and trends between the multiple parameters for 
a multi-disciplinary exploration of the TRS design space. 

4.4. The model-based approach for value and sustainability assessment enabled by the 
use of machine learning methods 

This subsection presents the application of the integrated approach in the case study coupling value and 
sustainability assessment to the results of DOE. Machine learning algorithms have been applied both 
with the descriptive and prescriptive goal to enable extensive multi-disciplinary design space 
exploration while sensibly reducing the time needed for the design analysis. 
Figure 2 shows the process of the ideal integrated scenario has emerged from the empirical study. 
Different models are run in a concurrent fashion and have achieved different levels of development and 
application. Figure 2 shows in green the models that have been fully implemented in the TRS case study, 
in green with grey shadows those that are partially implemented and under test prior to further 
development, and in red with grey shadows the models under development, i.e. whose nature is still 
qualitative and are not automatically linked to the results of DOE analysis. On overall four main "stages" 
of the integrated scenario can be identified, namely: the DOE stage where "n" design variations are 
simulated in computer-aided design environment; a "value assessment" stage, encompassing cost and 
performance value analysis and ilities quantification; a "sustainability assessment" stage including 
sustainability identification and sustainability models; and a "scenario integration" stage, where 
descriptive and predictive digital models are created and results are visualized. 

 
Figure 2. The model-based approach for value and sustainability assessment enabled 

by the use of machine learning methods 
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4.4.1. Generation of descriptive and predictive digital models in the TRS case study 

The first step of the approach consists in the generation of a high number of design variants (called 
design cases) in a computer-aided design environment, which engineering performances are evaluated 
through DOE. This stage requires high computational power using finite element analysis to simulate 
the design performances. Typically, hundreds of design cases can be simulated at this stage varying 
specific input parameters and the typical results obtained are the geometrical definition of the 
component, including mass and volume, the definition and quantification of the thermal areas, strength 
and stiffness assessment and component life evaluation. In the TRS example, those output from 
simulation serve as input for both value and sustainability modelling. Operational cost assessment, 
customer revenue models, manufacturing feasibility (and cost in particular related to the welding 
process) and maintenance cost models were run as quantitative value assessment models. The mass and 
volume of the different design cases, their geometrical dimensions, the length and thickness served as 
input for the quantitative value models. These data were complemented by the use of machine learning 
technique on external databases to derive specific predictive functions. This was the case, for instance, 
of the customer revenue models using ML to derive prediction about the fuel performances of aircraft 
under different operating conditions based on ICAO (2017) data, and of the maintenance cost model 
based on ML applied on aircraft maintenance databased (Seemann et al., 2010). An approach similar to 
that applied by Seemann et al. (2010) was potentially applicable for survivability and commonality 
assessment, although requiring historical data not available in the TRS case study. 
Concurrently sustainability assessment was run on the design cases by first identifying strategic long-
term and leading sustainability criteria so to define sustainability indicators and interval definition. The 
sustainability models were based on values characterized by qualitative assessments of the selected 
indicators. The overall intent of the approach was to integrate the final results into a digital model that 
could treat value and sustainability assessment as a natural result of the design of experiment, thus 
capable of comparing traditional engineering dimensions with value and sustainability aspects for 
hundreds of design cases in a restricted timeframe. The high quantity of data generated in the approach 
calls for a method to visualize the performances of different variables based on specific trade-off 
analysis run by engineers. The use of dynamic parallel diagrams emerged as a powerful tool to navigate 
through the design cases and generate a visual feedback on trends and trade-off between mechanical 
performances and value and sustainability scores, while at the same time allowing interactive analysis 
in the design team. Figure 3 shows an example of the visualization of the results with a dynamic parallel 
diagram. In the analysis, a selection of variables are included and the results are evaluated with respect 
to performance metrics such as Mass, Cost and Sustainability compliance. 

 
Figure 3. Illustration of dynamic parallel diagram 

At this stage ML was applied to the available dataset encompassing also value and sustainability in order 
to derive surrogate models and response surfaces capable of predicting the multi-disciplinary 
performances of new design cases without the need to re-run simulations, thus saving consistent amount 
of time and resources in early design analysis. Furthermore, The advantage of using ML algorithms 
compared to traditional surrogate modelling techniques are the ability to include categorical data such 
as “supplier”, “Manufacturing Method” etc. Figure 4 shows an example of the surrogate model derived 
from the TRS analysis, showing the increased number of design cases tested compared to those 
visualized in Figure 3. 
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Figure 4. Illustration of how prediction based on ML complements the original  
          assessment by providing a better understanding of the design space 

5. Concluding discussion 
Early phases of product development are sometimes described as “fuzzy” as they are characterized by 
incomplete information of both the product solution emerging, and the factual conditions wherein the 
product will be eventually used. As most companies adopt digital modelling techniques to create 
representations of a range of product solutions and uses simulation technologies to evaluate their 
anticipated behaviour, decision support needs to fit into such a work environment. The paper has 
presented a prescriptive approach toward exploiting the use of machine learning methods in combination 
with value and sustainability modelling to create a model-driven approach to support engineers in the 
early stages of complex design projects. The approach addresses the engineers´ need to quickly and 
effectively investigate hundreds of possible designs configuration in the design space from a cross-
disciplinary perspective. This drastically reduces the time for simulating design variations through the 
use of surrogate modelling. The result of the approach is a reduced set of potentially valuable design 
cases for more detailed analysis. In other words, the approach enables an initial multidisciplinary 
analysis of hundreds of design alternatives guiding the selection of the more promising solutions 
(indicatively four to five). The approach presented in Figure 2 is built on the work by Isaksson et al. 
(2015) initially providing a descriptive analysis of the industrial needs and challenges about the 
integration of value and sustainability in early design, and it is part of a larger research initiative aiming 
to the development of an integrated model-driven methodology for early design decision support. The 
application in the TRS case study was an intermediate step towards the final development of the 
methodology, run to test the applicability and effectiveness of the proposed model-based approach in a 
limited scenario. For this reason, some of the steps of the methodology described are under development. 
A number of research challenges still need to be addressed in these areas: 

 Translating and calculating sustainability indicators to cost or return on investment (see Hallstedt 
et al., 2015). An introductory approach for identifying the relationship between one of the 
sustainability indicators, SCI score for alloys, design variables (number of vanes) and cost for 
one design study has been developed, but is not presented in this paper.  

 Correlation studies and system analysis studies between sustainability indicators and value 
criteria. A better understanding is needed of how and which sustainability indicators and value 
criteria are correlated, e.g. fuel cost saved, CO2 emission saved, cost of raw material, 
commonality in product, commonality in production.  

 Correlation studies and system analysis studies between sustainability indicators and design 
requirements. The need is having a better understanding of the relationships and the influences 
between sustainability indicators and design requirements to support identifying which 
sustainability requirements to investigate in the early design phase. 

Conclusions can be drawn concerning the verification of the usability and applicability of the approach 
in the case study, presented in Section 3:  

 The approach allows the concurrent multidimensional analysis of design cases complementing 
mechanical simulation results with value and sustainability assessment. Visualizations and 
surrogate modelling allowed the considerations of aspects not available in traditional DOE results, 
thus expanding the design space considerations. 

 Machine learning algorithms allow dealing with both qualitative and quantitative data in unique 
models allowing prediction based on both categorical and numerical variables. This has been 
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especially relevant for the integration of sustainability assessment in the DOE results prior to the 
visualization of the results with dynamic parallel diagrams. 

 The approach does not integrate a method to quantify the results reliability other than the precision 
of the ML algorithm used. The integration of the quantification of the uncertainty embedded in 
the assumption used in value and sustainability assessment is subject to further research.  
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