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Abstract 
To confront current market changes, Set-Based Design (SBD) should help carmakers improve time, cost 
and quality in early design phase. In a development process using ever more computer experiments, 
building predictive models of the solution space is key to implementing SBD. The present article 
proposes a new algorithm to build high quality predictive metamodels efficiently and tests it on several 
benchmark problems. Promising results are obtained. We believe such models could be used for several 
purpose in design: implementing SBD, optimisation and generating feasible concepts, among others. 
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1. Introduction 
The automotive industry undergoes important changes. New competitors challenge established ones, 
customers and regulations push carmakers towards the development of hybrid and fully electrical 
vehicles, of connected vehicles while asking for ever more personalisation. German carmakers are under 
pressure. To remain competitive, they must deal with those challenges while reducing costs and time-
to-market and improving quality. This is in particular the case for the early design phase of vehicles, 
urging design organisations on developing more efficient processes, methods and tools. 
Still, point-based design is still a prevalent practice in industrial product development processes. 
Designers begin by selecting a variety of possible solutions, then choose one for further investigation. 
Then the latter follows a process of evaluations and modifications till it satisfies every discipline's 
constraints. For complex products which need multidisciplinary evaluations, the process becomes 
difficult. The general process is described by Ulrich and Eppinger (2012), where they suggest some 
solutions to make point-based design more efficient: performing more iterations quickly, through faster 
and more frequent information exchanges as well as decoupling tasks to avoid iterations, by clearly 
defining interfaces for interacting components so as to design subsystems independently, in parallel. 
Ward et al. (1995) describe how U.S. carmakers indeed applied those recommendations to improve their 
development process, along with the development of concurrent engineering. 
On the contrary, set-based design (SBD) does not refine one concept iteratively but consider 
parameter sets instead. SBD was popularised with a series of articles comparing Toyota's set-based 
concurrent engineering (SBCE) practice to the point-based design applied by U.S. carmakers (Ward 
et al., 1995; Sobek II et al., 1999; Ford and Sobek II, 2005). Sobek II et al. (1999) describe three main 
principles of SBCE: (1) map the design space, (2) integrate by intersection, and (3) establish feasibility 
before commitment (Figure 1). The process, through a broader exploration of the solution space, 
seems inefficient, and some aspects of Toyota's practice contradict traditional recommendations for 
point-based design: iterations and communication between stakeholders are slower, and designers 
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postpone the choice of critical parameters. Yet, those studies suggest that set-based approaches can 
offer benefits in terms of reductions in costly design iterations, improved design quality and reduced 
time-to-market.  
However, the aforementioned studies provide little guidance on how to implement SBD. The main 
tool described are the so-called lessons-learned books that describe the current company capability, 
including feasibility ranges. The determination of those feasibility ranges is however not described.  

 
Figure 1. Principles of set-based concurrent engineering (Nahm and Ishikawa, 2005) 

Furthermore, apart from this lack of guidance, from the authors' experience, it is difficult to implement 
set-based design in organisations which are mainly used to point-based design. First, knowledge has to 
be accumulated and formalised on the set of feasible designs, a knowledge which has a different 
structure from that used in point-based design. This leads to the need of appropriate databases and data 
structures, such as for instance described in Toepfer and Naumann (2017). Second, designers tend to 
intuitively prefer to optimise the design of the part they are responsible for, than to explore the overall 
design space. Besides, organisations seek to reduce time-to-market by accelerating their iteration speed 
rather than challenging their current methodology. 
At a time when Artificial Intelligence techniques and automation are thriving, we would like to use SBD 
as part of computational design synthesis (CDS) as defined by Campbell and Shea (2014): "CDS is a 
research area focused on approaches to automating synthesis activities in design. Resulting methods 
may be fully automated or interactive with the goals of automatically generating a range of 
alternatives…" We concur with their analysis that "when applied later in the design process, meaningful 
results are only achievable by interfacing with the computational analysis tools that govern our 
engineering world, such as those for solving partial-differential field equations or those for solving 
ordinary-differential equations." Indeed, SBD methods should be able to deal with computationally 
expensive simulations to present a real interest for industrial applications.  
To be more precise, the present paper deals with what Nahm and Ishikawa (2005) dubbed set-based 
parametric design (SBPD), i.e. when design or performance space are defined by a set of design or 
performance parameters and their values. Then, evaluation of concepts is made using relevant 
constraints for each discipline, which may be the results of computationally expensive simulations or 
optimisations. Methods for implementing set-based parametric design could be beneficial, among 
others, to the automotive, naval and aeronautical industries.  
The rest of the paper is organised as follows: in Section 2 and 3, we present the state-of-the-art of set-
based parametric design methods, and state-of-the-art optimisation techniques on which our method is 
based. Section 4 consists of the description of our algorithm. The evaluation of the developed method 
on benchmark problems is to be found in Sections 5. Limitations and further developments are discussed 
in Section 6. 
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2. State-of-the-art of set-based parametric design methods 
The present subsection exposes different methods that were proposed in the past two decades to 
implement SBPD and especially design space mapping, as well as considerations of their limitations 
regarding their ability to deal efficiently with simulation data.  
A strong research effort has been carried on developing methods that can consider sets, with the 
possible purpose of mapping the design space, the most well-known ones being fuzzy logics and 
interval arithmetic, as well as extensions of those. In those tracks, papers such as Yannou et al. (2003), 
or Trabelsi et al. (2015) present a method based on interval arithmetic and a branch-and-prune 
algorithm: Constraint satisfaction programming (CSP). CSP in itself is only applicable to problems 
with explicit analytical expressions with good properties especially that prevent the so-called 
dependency problem. To tackle the problem of simulation data, Yannou et al. (2003) proposed to use 
metamodelling techniques to build a metamodel of the constraint functions in order to apply CSP on 
it. However, CSP presents two difficulties for industrial use. First, to avoid the dependency problem, 
CSP encourages the use of lower quality metamodels, such as first- or second-order regressions, which 
are unable to model complex functions. Second, the branch-and-prune algorithm computational cost 
grows exponentially when the number of design variables increases. Still, the idea of using 
metamodels for constraint modelling appears to be a promising. 
Another technique, proposed by Fender et al. (2017) builds solution boxes (i.e. Cartesian products of 
design variables' ranges) in which every point satisfies the system's constraints. The method is 
efficient and precise, yet it is only applicable on linear constraints in order to use linear optimisation 
algorithms. Those can be obtained either by using first-order regressions or by linearizing the physical 
problem, but one drawback is the inability to represent complex behaviours accurately. Therefore, the 
precision of the method is obtained by reducing models' accuracy. This is not satisfying for a general 
purpose.  
While the aforementioned methods assume the use of analytical expressions that can be obtained with 
metamodels, other authors proposed sampling-based methods to use simulation data without the need 
for metamodels.  
Kizer and Mavris (2014) introduced the Dynamically Constrained SBD methodology. They sample 
the design space using Design of Computer Experiments (DoCE) methods and then identify the set of 
feasible points for each constraints to build the convex hull of the feasible space. Then new points 
near the boundary of the feasible space are sampled, to be able to predict the displacement of the 
boundary when constraints vary. Though they rely on strong assumptions, namely the fact that 
constraints define convex feasible spaces, and that one must find several feasible points after the 
DoCE is performed in order to define a convex hull, the method's ability to deal with constraints 
perturbations is an important one for industrial practice. 
Similarly, Madhavan et al. (2008) propose the SBD Method which is partly based on two levels of 
Latin Hypercube Sampling (LHS) a DoCE method for which the design space is sampled a first time 
with LHS, then a second LHS is performed in the neighbourhood of solutions found in the first sample, 
with the goal to obtain more feasible points. Therefore, that technique suffers from the same drawback 
as the previous method, which the need for solutions in the first LHS. It is to be expected that for new 
problems on which designers have little experience or when a large number of design variable is 
considered, the portion of the solution space in the design space might become negligible. Therefore, 
this method is not suitable for complex systems design. 
Shahan and Seepersad (2009), developed a methodology based on Bayesian networks to map and 
accumulate knowledge on regions of interest in the design space. This helps designers having a model 
of the areas that are feasible considering their discipline's constraints. The benefit of these models is 
that they can be shared between disciplines to find the intersection of the different disciplines' feasible 
spaces. That ability to share models of feasible spaces or regions of interest is important when multiple 
teams collaborate. Such models could take the form of solution boxes shared between disciplines, or 
of more complex models such as Bayesian networks that can be also used for intersection of the 
disciplines' feasible spaces and can also be used to obtain solution boxes at the system level.  
One of the most promising approach found in the literature is the one developed by some BMW 
researchers, referred as Solution Space Engineering. This approach is related to the two first phases 
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of SBD (Figure 1). Indeed, after building simplified physical surrogate models, they try to find the 
largest possible solution box for a given problem. Then intersections can be obtained easily by 
computing the intersection of boxes (Zimmermann et al., (2017). To achieve this, they created three 
methods. The first one found in Fender et al. (2016) was already mentioned above. The two other 
methods are sampling-based. One is semi-manual: starting from a known feasible point, designers 
sample in an hyperbox (i.e. n-dimensional boxes) in the design space and try to expand that hyperbox 
iteratively by moving its sides while trying to have no infeasible point in the hyperbox. The other is 
a stochastic algorithm described and tested on engineering use cases in Zimmermann and von Hoessle 
(2013), Fender et al. (2014) and Graff et al. (2016). The algorithm starts with searching a feasible 
point in the design space using classic optimisation algorithm, and then the algorithm sample 100 
random points in hyperboxes that move in the design space iteratively. The algorithm stops when a 
"big" box (the size can be defined by the volume of the box for instance) with 100 feasible points is 
found, relying on Lehar and Zimmerman’s (2012) demonstration to ensure a high probability of 
having a solution box, independently of the dimension of the solution space. Even though those 
methods are shown to be effective on high-dimensional problems, one of the requirements is the 
ability to have very inexpensive physical surrogate models, since a lot of points may be sampled. 
Zimmermann et al. (2017) mention ~104 evaluations for the stochastic algorithm. Much of their 
research effort has been put on building simplified physical surrogate models.  
Considering the methods above, our research question is the following: How can we build metamodels 
of the solution space with a good quality and a limited number of sample points, when firstly, 
expensive simulations are used to map the design space, and secondly which can then be used for the 
semi-manual tool or the stochastic approach? Moreover, it would be interesting for industrial 
applications that those metamodels can be shared easily, as suggested by Shahan and Seepersad (2009) 
and also be able to take uncertainty on constraints' levels as suggested by Kizer and Mavris (2014). 

3. State-of-the-art of optimisation techniques 
Though the presented problem is not an optimisation one, in the sense that the aim is not to optimise 
an objective function, but rather having a model to predict if a design satisfies constraints or not, 
recent research streams in optimisation are relevant to our subject. Shan and Wang (2010) carried a 
survey on modelling and optimisation strategies to solve what they coined High-dimensional, 
Expensive (computationally), Black-box (HEB) problems. Those problems are indeed the kind of 
problems encountered during the development of complex systems, since a high number of design 
variables (more than 20) are to be handled and constraints can be black-box functions, as the result of 
simulations, measurements or optimisations that can be expensive (minutes, hours, even days of 
computation time), with no explicit relationship between design variables and simulation results. 
Among different strategies to tackle those complex problems, one focus is put on Model-Based Design 
Optimisation (MBDO) techniques. Those techniques consist in building mathematical surrogate-
models of the constraint and objective functions with good approximation properties, in order to run 
well-known optimisation algorithms on those metamodels. This can be done either sequentially or 
iteratively. In the sequential approach, one first sample points, then build the metamodel and finally 
run an optimisation on the metamodel. In the so-called direct sampling approach, optimisations' 
results are used to update the metamodel and re-run optimisations on the updated metamodels, thus 
improving the model iteratively. This kind of approach are also promising for multiobjective 
optimisation, as presented in the survey by Tabatabaei et al. (2015). In both cases, those methods are 
interesting in our context. In fact, one of their aims is to create a good model for constraints in the 
neighbourhood of either optima or of the Pareto front for single objective and multiobjective 
optimisation respectively. Since the goal of the present paper is to develop a method which builds a 
model with a good accuracy of the solution space boundary, MBDO techniques appear to be a sound 
starting point. 
Among the methods explored by optimisation researchers, the COBRA algorithm (Regis, 2014) and its 
variants presented in Koch et al. (2014, 2015), and Bagheri et al. (2015, 2016a, 2016b) retained our 
attention. It is able to deal with non-linear constrained problems without using any penalty function. It 
has also be proven to be efficient on high-dimensional problems such as the Mopta08 benchmark with 
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124 design variables and 68 constraints (Jones, 2008), using a lower number of evaluations compared 
to the other state-of-the-art methods. One can also set a margin on the level of constraint fulfilment. This 
explains why the proposed algorithm to build model is based on COBRA.  

4. Metaheuristic description 

4.1. General problem 
The problem we are dealing with is to build a model predicting if a point in the design space belongs to 
the solution space or not (Figure 2). We define those terms in the present section. Let ݔ௜, ݅ ൌ 1,… , ݀ be 
the continuous design variables and ݈ ௜ ,௜ݑ	݀݊ܽ	 ݅ ൌ 1,… , ݀ be their lower and upper bounds, respectively. 
The Design Space (DS) can then be defined as:  

∆ ൌ ∏ ሾl୍, 	u୧ሿ
ୢ
୧ୀଵ   (1) 

Then we consider inequality constraints, defined as g୨ሺxሻ ൑ 0, 	j ൌ 1,… ,m. The Solution Space is 
therefore defined as follows: 

Ω ൌ ሼx ∈ ∆, 	g୨ሺxሻ ൑ 0, 	j ൌ 1, 	2, 	 … , 	mሽ (2) 

Figure 2 illustrate those concepts on a 2 dimensional design problem. 

 
Figure 2. Solution Space Engineering concepts on a 2D design problem 

As explained in the previous section, we aim at building a model which predicts if a design satisfies 
constraints or not. This resolves in creating a model to approximate the following indicator function, i.e. 
building a binary classifier approximating: 

1Ωሺxሻ ൌ ቄ
1, x ∈ Ω
0, x ∉ Ω

 (3) 

Equality constraints are not considered here due to the fact that, except for constraints with discrete 
values, they are likely to reduce the number of dimensions of the solution space, preventing us from 
finding any solution box in the solution space.  
We have two main requirements on the model building process. The first one being that the process 
should require the lowest number of simulation runs as possible. Indeed, for instance, Jones (2008) 
explains that for the engineering problem encountered at General Motors, one could hope for a 
maximum of 60 evaluations per day, meaning it would take a little more than a month just for 1800 
evaluations. The second requirement is that the classifier should be of a good quality. We define criteria 
for our model quality in Section 5.3. 

4.2. Algorithm proposal 
As mentioned in the literature review, we used COBRA from Regis (2014) as a starting point for our 
own algorithm. After an initialisation, our algorithm is divided into two phases. Phase I aims at finding 
a feasible point in the design space. Phase II aims at finding points that can improve the model of the 
solution space. Our intuition is that points which are well spread in the solution space and which are 
close to the solution space boundary are likely to improve our metamodel.  
The different phases are described in the following subsections. The process is represented in Figure 3.  
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Figure 3. Flowchart of the algorithm 

4.2.1. Initialisation 

After the designers have defined their parameters and their respective ranges, a Design of Computer 
Experiments (DoCE) is used to generate a sample population to be evaluated. In our case we use a Latin 
Hypercube Sampling, because it intends to have points spread evenly in the design space. As explained 
in Regis (2014) the minimum size of the initial sample population shall be higher than ݀ ൅ 1, ݀ being 
the number of design variables. However, Koch et al. (2014) suggest that one may obtain better results 
with 3*d initial points for optimisation. We decided to keep with the minimum number of points.  
After generating an initial sample population by using a DoCE, points are evaluated by computing the 
constraints for each point with simulations, optimisations or measurements depending on the case. If all 
points are infeasible, then Phase I starts, otherwise the algorithm moves directly to Phase II. 

4.2.2. Phase I 

Phase I iterates through the following steps until a feasible point has been found.  
First, using the sample population, for each constraint g୧, a metamodel ݏሺ௜ሻ is built using a Radial Basis 
Functions (RBF) Network with cubic RBF with a polynomial tail (Powell, 1992). The process for 
building those metamodels can be found in Regis (2014). Other metamodels could have been used such 
as Multi-Layered Neural Networks, Support Vector Machines (Cortes and Vapnick, 1995) or Kriging 
(Krige, 1951). RBF Networks have the advantage of simplicity, even for high-dimensional problems. 
They can also approximate a function with any arbitrary precision and they bring more information than 
SVM which are mainly useful for binary data.  
Second, an optimisation algorithm is run in order to minimise constraint violations. The optimiser has 
to handle non-linear constrained optimisation problems. In our case, we use COBYLA, following Koch 
et al. (2014). The optimisation problem is the following: 

min
௫∈∆

ቐ
∑ ൣmax൛ݏሺ௜ሻሺݔሻ, 0ൟ൧

ଶ௠
௜ୀଵ , ݂݅	∃݅ ൌ 1, … ,݉, ሻݔሺ௜ሻሺݏ ൒ 0	

max
௜ୀଵ,…,௠

	ሺݏ௡
ሺ௜ሻሺݔሻሻ ݁ݏ݅ݓݎ݄݁ݐ݋

 (4) 

Subject to: 

ݔ ∈ ∆ (5) 

ሻݔሺ௜ሻሺݏ ൅ ε ൑ 0, ݅ ൌ 1,… ,݉, ߝ ∈ Թା (6) 

ฮݔ െ ௝ฮݔ ൒ ρ, ݆ ൌ 1,… , ݊, ߩ ∈ Թା (7) 

Equation 5 is the constraint for the bounds of the design variables. Equation 6 means the concept has to 
fulfil for the surrogate constraints. ε is a margin used to guarantee new points are not too close to the 
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boundary of the solution space. Equation 7 is a requirement on the distance to points already in the 
sample population, ρ can be changed at each iteration to promote global or local search. See Regis 
(2014) for more information on the margin and the distance requirement. Since COBYLA needs a 
starting point, we choose the point in the sample population that minimises the objective function.  
The point obtained after the optimisation is then evaluated and added to the sample population.  

4.2.3. Phase II 

Once a feasible point is found, Phase II begins. This phase is similar to Phase I except for the objective 
function. Now, the overall goal is to find solutions maximising dispersion. Therefore, we tested our 
algorithm with the following objective function to maximise.  

ሻݔଵሺݖ ൌ 	 ଵ

|࣭೙|
min
௬∈࣭೙

ݔ‖ െ y‖ (8) 

It simply consists in maximising the minimum distance to other points in the set of feasible points in the 
sample population, noted ࣭௡ for the n-th iteration. This objective function aims at having solutions 
spread evenly in the solution space. 
 second option we could not evaluate consists in maximising the product of the eigenvalues of the ܣ
covariance matrix of the points belonging to ࣭௡, which can be considered as a proxy for the volume of 
the points in ࣭௡. Since this product can be particularly small, especially in high dimensions, one can use 
the log10 of this product to avoid approximation errors (9).  

ሻݔଶሺݖ ൌ 10݃݋݈	 ቀ∏ λ୧
୫୧୬ሺௗ,|࣭೙|ሻ
௜ୀଵ ቁ ൌ 	∑ 10ሺλ୧ሻ݃݋݈

୫୧୬ሺௗ,|࣭೙|ሻ
௜ୀଵ  (9) 

It is to be noted that instead of defining the best point to start the optimisation from, we decided to adopt 
a multistart strategy, starting optimisations from each point in ࣭௡ and selecting the best proposition at 
the end of this process. 
Phase II iterates those optimisations until it reaches a stopping criterion. This stopping criterion could 
be an evaluation budget, but this is rather arbitrary. Other options can be considered: variation in the 
value of the objective function (9). When the variation becomes low, the "volume" of the points in ࣭௡ 
is not changing any more, which would indicate that no more progress is to be expected. Another option 
could be to use Markov Chain Monte Carlo methods such as the one presented by Martiniani et al. 
(2016), to measure the volume of the predicted solution space. One could therefore measure the variation 
in volume of the predicted solution space, which is more representative than solely the "volume" of the 
points in ࣭௡. However, both stopping criteria were not implemented and tested at the time the present 
article was being written.  

4.2.4. Using the results for solution space modelling 

At the end of the process, a metamodel ݏሺ௜ሻ is obtained for each constraint g୧, and we expect them to 
have a good precision in the neighbourhood of the solution space. The following approximation for the 
indicator function of the solution space can then be used: 

1ஐ෢ሺxሻ ൌ ቊ
1, if max

௜∈ۤଵ;௠ۥ
ሺݏሺ௜ሻሺݔሻሻ ൏ 0

0, otherwise
 (10) 

This means that if a point satisfies every constraint metamodel, it is predicted to be feasible while if at 
least one constraint metamodel is not satisfied, then it is considered as infeasible. Moreover, since 
metamodels are built for every constraint, one can predict which constraints are not satisfied, and have 
an approximation of the extent of the constraint violations/satisfaction. 

5. Evaluation and results on benchmark problems 

5.1. Benchmark problems and characteristics 
Prior to applying our method on industrial case studies, we desired to ensure that it is working properly 
on benchmark problems. To do so, we tested our algorithm on benchmark problems used to evaluate 

DESIGN SUPPORT TOOLS 435



 

non-linear constrained optimisation algorithms found in Regis (2014). Four of those problems are real 
engineering problems: Welded Beam (WB4), Pressure Vessel Design (PVD4), Speed Reducer (SR7) as 
well as Gas Transmission Compressor Design (GTCD4). Other problems come from the G-suite 
problems and a last benchmark "MOPTA08" comes from a real industrial problem from General Motors 
described by Jones (2008). It is to be mentioned that G2OP is a modified version of G2 for which we 
took the opposite values of the constraints, so as to reduce the feasibility rate. 
Table 1 presents the problems' characteristics. The number of design variables is represented by 
"Dimension" and varies between 2 and 124. The number of inequality constraints varies between 1 and 
68. The feasibility rate is defined as the proportion of solution space in the design space and was 
measured by evaluating 107 randomly sampled points (108 points for G2OP and G3MOD, and 3*105 
points for MOPTA08) in the design space and computing the proportion of feasible points. 

Table 1. Benchmark problems' characteristics and results for Phase I  

Problem 
name 

Dimensio
n 

Number of 
constraints 

Feasibilit
y rate 

Number of failures 
(/30 runs) 

Average number 
of evaluations 

Standard 
deviation 

WB4 4 6 0.003% 1 52 54.3 

PVD4 4 3 0.559% 5 8 3.01 

SR7 7 11 0.096% 0 10 0.87 

Hesse 6 6 20.365% 0 7 1.2 

GTCD4 4 1 52.353% 0 5 0 

G2OP 10 2 <0.001% 0 23 12.34 

G3MOD 20 1 <0.001% 0 23 0.83 

G4 5 6 26.991% 0 6 0.47 

G5MOD 4 5 0.090% 0 7 1.26 

G6 2 2 0.006% 2 10 1.14 

G7 10 8 <0.001% 0 39 16.2 

G8 2 2 0.864% 0 8 4.76 

G9 7 4 0.527% 2 24 12.64 

G10 8 6 0.001% 2 21 9.63 

G18 9 13 <0.001% 4 67 37.07 

G19 15 5 0.004% 0 17 0.4 

G24 2 2 44.198% 0 3 0.87 

Mopta0
8 

124 68 <0.003% 7 418 170.49 

5.2. Evaluation of Phase I 
The first evaluation is focused on the ability to find a first solution in the design space. We ran our 
algorithm 30 times for each problem, and evaluated the performance of our algorithm with 3 criteria. 
The first one is the number of failures to find a feasible point in the design space after a given number 
of iterations, which is fixed to 500 for all problems except for MOPTA08 with 1000 evaluations. As we 
can see in Table 1, the algorithm sometimes fails, without a clear relationship with the number of 
constraints, design variables or feasibility rate. The functions' complexity plays indeed an important role 
in the success of our algorithm. We expect that we could improve the success rate for Phase I by 
implementing the online selection of models proposed by Bagheri et al. (2016) or by changing the 
starting point for the optimisation algorithm when the algorithm stagnates.  
Then, we computed the average number of evaluations to find a first feasible points as well as its 
standard deviation. There is not much to say on those results, except that they are consistent with those 
obtained by Regis (2014), with a slightly different implementation. Results are strongly linked to the 
non-linearity of constraint functions, which has to be considered case by case, explaining the variations 
in the average and the standard deviation of the number of evaluation to find a first feasible point.  
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5.3. Evaluation of Phase II 

5.3.1. About conventional model building 

In order to evaluate our algorithm for Phase II, we compare it to conventional model building (CMB), 
which consists in generating a sample population with a DoCE method, evaluating those points and then 
building a model for every constraint. To do so, we used LHS to create a sample, and then used a RBFN 
with cubic RBF and a polynomial tail as metamodels for every constraint. For each problem, we 
evaluated conventional (resp. our algorithm's) models built with progressively increasing sample size 
(resp. number of iterations). We repeated the process 10 times for each problem to compute means and 
standard deviations for each evaluation criteria described in the next subsection (see also Figure 4).  

5.3.2. Evaluation criteria and results 

Since 1ஐ෢  is a binary classifier, we can use classic quality measures for its evaluation, and among the 
possible measures, precision and sensitivity are the two most important for us. Precision corresponds to 
the proportion of the design points that are really feasible, among the points that are predicted to be 
feasible. The higher the precision, the more one can trust the model, when it predicts a point to be 
feasible. Sensitivity, also referred to as probability of detection, corresponds to the ratio between the 
number of points that are predicted to be and are really feasible, and the total number of feasible points. 
The higher the sensitivity, the lower number of feasible points the model misses.  
To measure precision and sensitivity, we first sampled between 3*107 and 107 points randomly, 
evaluated them with the true functions, and then with the models, either build using CMB, our algorithm. 
We could thereafter determine the quality of the models by comparing the true results and the predicted 
results. Since even with that large number of points, some problems did not have a sufficient number of 
feasible points, we could only evaluate our algorithm on problems listed in Table 2.  

Table 2. Evaluation results Phase II 

Problem 
name 

Precision > 90% 
speed ratio 

Sensitivity > 90% 
speed ratio 

Feasibility 
rate 

Solution ratio for 
precision > 90% 

Improvement 
factor on 

solution ratio 

G24 1.2 0.667 44.2% 51% 1.15 

Hesse 1.67 1.67 20.3% 70% 3.4 

PVD 2 2 0.559% 43% 77 

G5MOD 2 6 0.090% 25% 277 

SR7 1 5 0.096% 51% 531 

G8 2 2 0.864% 50% 58 

GTCD4 30 3 52.3% 70% 1.35 

WB4 NA NA 0.003% 44% 14667 

G6 NA NA 0.006% 15% 2500 

 
For our practice, we think that models with 90% precision and 90% sensitivity are already sufficient for 
the early design phase. Since we want to compare our algorithm to CMB and since the number of 
iterations is an important factor of performance of our algorithm, we compared the number of iterations 
that our algorithm needs to the sample size required by CMB to reach an average of 90% precision and 
90% sensitivity. Results are reported in Table 2. To illustrate how to read those results, on GTCD4, our 
algorithm is 30 times faster to get an average precision superior to 90% than CMB. A remarkable fact 
is that, except for problem G24, our algorithm is at least as efficient as CMB for precision and sensitivity.  
Being to create models with 90% precision and sensitivity 2 times faster is already a promising result 
for industry, as it is the case with most problems. Problems GTCD4, WB4 and G6 demonstrate the 
possibility of important performance increase thanks to our algorithm. Problems WB4 and G6 are 
difficult to interpret just with Table 2. Therefore, their results are analysed in the next subsection.  
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Another important performance factor improved by our algorithm is the number of feasible points in the 
sample population. Indeed, one can see that the lower the feasibility rate of the problem, the higher the 
improvement factor on the solution ratio compared to random sampling. This is important to reduce 
uncertainty about the location of the solution space as well as to build trust in the validity of models. 
Indeed, conventional models can be built even without having a single feasible point in the sample 
population. How can one be convinced of their quality in such a situation? 

5.3.3. Developed example: WB and G6 problems 

Problems WB4 and G6 illustrate the most the interest of our algorithm. Though they are not high-
dimensional, they are challenging for CMB techniques. Those difficulties can be observed in Figure 4, 
comparing the evolution of the performance of models when the number of points in the sample 
population increases. Points on the graphs represent average values and bars indicate the standard 
deviation. For G6, the quality of the model increases slowly with the size of the sample but stays far 
from the 90% objective even with 800 points. Moreover, results were particularly volatile. By contrast, 
our algorithm reached on average 95% precision and sensitivity with 20 iterations only.  

 
Figure 4. Comparison between Conventional Model Building (CMB) and our New 

Algorithm (NA) on problems WB4 and G6 

CMB methods are even worse for WB4, precision and sensitivity did not reach higher mean values than 
11%. Besides, increasing the number of points in the sample population did not seem to have a strong 
influence on the quality of the model. On the contrary, our algorithm improves steadily the quality of 
the prediction as the number of iterations increases. Precision increases quickly, reaching 95% already 
with 150 evaluations, while sensitivity is harder to improve, and reach a mean value of 90% after 300 
evaluations. Those results illustrate the promising advantages provided by our algorithm in terms of 
quality and time, by reducing the number of simulations required to build a high quality model.  
One of our current goals is to confirm those results on other problems with very small feasibility rates 
and possibly with more dimensions. Such problems as G2OP, G3MOD, G7, G10, G18, G19 and 
Mopta08 are good candidates, though they imply that we develop a more efficient way to measure 
models' quality than sampling randomly over the whole design space. Another aspect we are working 
on is the application of our approach on industrial use cases at Daimler. At the time of writing, we are 
testing and validating our algorithm on the design of side windows of a car, a problem with 25 
parameters and 12 constraints obtained with black-box functions. Though the validation process is not 
finished yet, first results are very encouraging.  

6. Conclusion and perspectives 
Our literature review revealed that in order to implement SBD in the current automotive industry, where 
the use of computer experiments is prevalent to evaluate concepts, metamodels predicting if points 
belong to the solution space are required. We propose a new algorithm based on state-of-the-art 
optimisation techniques to build such models efficiently and with good quality, which we tested on 
classic optimisation benchmark problems, obtaining promising results.  
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Some limitations to the use of our algorithm exist. It can only be used for parametric design, and for the 
moment with continuous variables only. In our approach, discrete parameters are considered at the 
configuration level, and then, one model can be created for each configuration (Toepfer et al., 2018). 
Constraints are assumed to be continuous over the design space, and we make the assumption that 
simulations are deterministic and return results for every point of the design space. SVMs could be used 
to model discrete or binary constraints. However, one drawback of SVMs is that they need feasible and 
infeasible points in their sample which might not always be easy. Also, changing constraint thresholds 
might imply having to update the model. This could be also be considered in advance by considering a 
range of constraint thresholds. 
Some further improvements are possible to improve our algorithm. Among others, we need to 
implement the stopping criteria, and we could implement an online selection of models, to adapt the 
metamodel type for each constraint, as in Bagheri et al. (2016b). Another important theme which has 
not been considered yet is a way to handle disconnected solution spaces. 
Apart from those limitations and potential improvements, our algorithm present several interests. Firstly, 
one could use it to quickly predict if a design is feasible or not, or which constraints are violated. This, 
combined to the use of the tool presented in section 2 of Toepfer et al. (2018) helps find solution boxes 
in the design space and therefore help deal with manufacturing tolerances and have robust designs. 
Moreover, it could be coupled with generative grammars, with grammars handling discrete parameters 
while our algorithm could map the solution space for each design. Secondly, our algorithm could be a 
starting point for optimisation, since it helps considering points that belong only to the solution space. 
Thirdly, one could sample in the solution space with Markov Chain Monte Carlo methods in order to 
generate feasible design alternatives, enhancing thus the designers' ideation process. 
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