
 

 

 

A CATEGORY OF DESIGN STEPS 

Breiner, Spencer (1); Subrahmanian, Eswaran (1,2) 

1: National Institute of Standards and Technology (NIST), United States of America; 2: Carnegie Mellon 

University, United States of America 

 

Abstract 

In this paper we critique the interpretation of Concept-Knowledge theory in terms of logical decidability. 

We argue instead that concepts and knowledge should be regarded as logical language and axioms, the 

two main components of a logical theory. Based on this proposal and using tools from the mathematics 

of category theory, we propose a category of logical designs to act as a formal interpretation for the 

dynamic operators which define the design processes of C-K theory. 

 

Keywords: C-K theory, Category theory, Product modelling / models, Knowledge management, 

Innovation 

 

Contact: 

Dr. Spencer Breiner 

National Institute of Standards and Technology (NIST) 

ITL 

United States of America 

spencer.breiner@nist.gov 

 

21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED17 
21-25 AUGUST 2017, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA 
 

 

 

Please cite this paper as:  

 Surnames, Initials: Title of paper. In: Proceedings of the 21st International Conference on Engineering Design (ICED17), 

Vol. 7: Design Theory and Research Methodology, Vancouver, Canada, 21.-25.08.2017. 

141



  ICED17 

1 INTRODUCTION 

Concept-Knowledge (C-K) theory is a semi-formal model of design which aims to explicitly account 

for the process of innovation, characterized by the creation of new, unexpected products and methods. 

The formal aspect of the theory arises from a connection with symbolic logic, in which both concepts 

and knowledge are regarded as logical propositions, differentiated by a logical property called 

decidability. C-K theory then analyses the processes of design in terms of four operators which embody 

navigation through the space of possible (and impossible) designs (Hatchuel & Weil, 2003). 

Our goal here is to argue against this interpretation, and to provide a better one. The existing 

interpretation suffers from several problems, leading to a mismatch between the usage of C-K theory 

and the mathematical structure of logical systems. Our proposal is simpler and more direct, associating 

concepts with symbolic language and knowledge with axioms, the two key components of a first-order 

logical theory. 

In order to formalize the dynamic aspects of C-K theory, we introduce some ideas from the theory of 

categories, a mathematical discipline which studies abstract composable processes. A well-known 

connection between categories and logic (Makkai & Reyes, 1977) allows us recast our C-K designs as 

categorical structures. We can then use mappings between categories, called functors, in order to 

interpret the design operators of C-K theory. 

2 C-K THEORY AND ITS LOGICAL INTERPRETATION 

Concept-Knowledge (C-K) theory is a theory of design which aims to explicitly account for innovation. 

It arises from the observation that traditional problem-solving theories of design focus on decision-

theoretic models which are insufficient to explain how new objects, outside a given array of choices, 

can be generated. 

C-K theory postulates two spaces—the “Concept Space” and the “Knowledge Space”—which we 

explore in the process of design (Figure 1). In particular, four "operators" allow us to modify these two 

spaces. The internal operators are concept expansion (C→C) and knowledge expansion (K→K). The 

first allows us to brainstorm and create new concepts without regard to feasibility, while the second 

allows us to analyze and recombine existing knowledge to achieve new insights. The essence of design, 

though, lies in the external operators, conjunction (C→K) and disjunction (K→C). These allow for a 

back and forth interaction between the two spaces, testing concepts to generate new knowledge and 

studying knowledge to suggest new concepts. 

Hatchuel & Weil (2003) present an example in the development of a magnesium-carbon dioxide (Mg-

CO2) engine for use in a robotic Mars mission. The initial design question is whether an Mg-CO2 could 

fuel the engine on a Mars mission; they might be lighter than traditional engines because the CO2 

reactant can be harvested from Mars' atmosphere (K→C). Researchers conducted landed mass 

calculations (a proxy for launch costs) for both types of engine, finding that the Mg-CO2 engine was 

not viable (C→K). Rather than ending their analysis here, the researchers introduced several 

characteristics (e.g., planned/unplanned) which a mission might satisfy (C→C). By analyzing the 

specific requirements in these various situations, the researchers were able to identify a range of optimal 

performance criteria for various niche functions (C→K). Comparing these to the known characteristics 

of Mg-CO2 engines, they were able to identify useful applications in certain unplanned and emergency 

situations (K→K). 
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Figure 1. C-K operators in Mg-CO2 engine 

C-K theory aims to not only structure innovation in design, but also to formalize it, through a connection 

to symbolic logic (an alternative formalization in terms of action logic can be found in Salustri (2005)). 

Hatchuel & Weil propose such an interpretation in (2003), which we will refer to as the HW 

interpretation. Under this approach we can think of both concepts and knowledge as propositions 

(true/false statements). A proposition counts as knowledge if it is decidable, which is to say that it can 

be proved definitively true or false. By contrast, concepts in the HW interpretation are propositions 

whose truth cannot be ascertained from the existing base of knowledge.  

Furthermore, Hatchuel, et al. (2007) argue that design seeks to take an undecidable concept such as 

"Mg-CO2 engine for Mars mission" and move it into the realm of knowledge by demonstrating (or 

refuting) its feasibility. They claim that, in this respect, design can be viewed as a generalization of 

forcing, a mathematical technique from abstract set theory which can be used to produce new universes 

of sets satisfying certain desirable characteristics, and that this provides "a new scientific identity" for 

design theory. 

3 THE NEED FOR A NEW INTERPRETATION 

While we agree that C-K theory is useful in practice, as a framework for organizing innovation in design, 

we believe that its formal foundations are a little shaky. In this section, we present three arguments 

questioning the HW interpretation of C-K theory suggested by Hatchuel, et al. (2003). We find that their 

approach using decidability fails to line up with the language it uses, the mathematics which grounds it, 

and the practice which it aims to describe. 

The first hint that the received view might not capture the appropriate relationship between C and K is 

linguistic. If a concept is a proposition whose truth value is unknown, then as I gain information concepts 

disappear to be replaced by knowledge. 

But this is wrong. My concept of "a unicorn" does not stop being a concept simply because I know that 

such beasts are mythical; "a tree" is still a concept though we know that they exist. Indeed, the idea that 

concepts are propositions stems from an implicit conflation between a concept 𝐶 and a certain 

proposition related to it: "There is an 𝑥 which is a 𝐶". 

The problem is that, if 𝐶 should be associated with any proposition, it should be the following simpler 

statement: "𝑥 is a 𝐶". In terms of symbols, it is the difference between these two formulas:  

(∃𝑥. 𝐶(𝑥)) ⇎ 𝐶(𝑥) 

The formula on the left must be either true or false (though we might not know which one). The formula 

on the right simply does not have a truth value; the statement "𝑥 is a 𝐶" is neither true nor false because 

its value depends on another quantity 𝑥. Therefore, the formula on the left defines a truth function 

mapping each 𝑥 to a truth value. We say that 𝑥 is a free variable in 𝐶. 

The second clue which argues against the HW interpretation is mathematical. Although most 

descriptions of C-K theory are couched in terms of propositions, it is clear that the logician's 

"propositional calculus" is not up to the demands. This is because the propositional calculus is the study 

of truth values rather than truth functions, and therefore incapable of handling the sort of distinctions 
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raised above. Instead we will need something more like the "predicate calculus" which studies both 

individuals and the properties they exhibit. We do not mean to suggest that C-K theorists are unaware 

of this necessity; rather, our concern is that the use of propositional language oversimplifies our informal 

intuitions. For simplicity, we will focus classical first-order logic, but the discussion applies much more 

broadly, both to simpler logics (e.g., algebraic or intuitionistic) and to stronger ones (e.g., multi-sorted 

programming languages or higher-order logic). 

This shift, from the logic of truth to the logic of individuals, is important for the following reason: such 

logical theories require a specified symbolic language before one can even talk about propositions. This 

raises concerns when we are told that concepts and knowledge are propositions, but the language in 

which they are written is left unmentioned. More tellingly, even precise presentations like Kazakçi 

(2009) take the logical language as a given, with no indication of how it relates to (or could be derived 

from) a given design problem. 

The third and most nettlesome problem with the HW interpretation is methodological: it simply cannot 

be applied in practice. This is not to say that C-K theory is not useful. Far from it: the references in the 

section 2 make it clear that C-K theory can be quite valuable. However, that value seems to be largely 

independent of the theory's logical interpretation. 

This disconnect takes several forms. Most apparent, perhaps, is the fact that C-K based investigations 

typically proceed in natural language and are rarely, if ever, given a formal translation. From this it is 

clear that the formal interpretation is not necessary for (and perhaps orthogonal to) the typical 

applications of C-K theory in design. 

The connection with forcing is even more tenuous. We are unaware of any attempt to analyze a real-life 

design case study through the lens of forcing. Forcing constructions have several well-defined 

components. In a design context, what is the relevant "ground model" of set theory to base our analysis? 

How would one identify or construct a generic filter? Where and how can we recover a new design from 

the extension model which is produced from mathematical forcing? 

And what are the implications of this new identity for design practice? "[W]e can better understand why 

Design practice can be disconcerting, controversial and stressful" (emphasis in original). But if this is 

all that the formalism grants us, then it may not be worth the bother. 

4 AN ALTERNATE INTERPRETATION 

In this section, we will present and analyze an alternative logical interpretation for C-K theory: we 

associate the concepts of a design with a symbolic language, and its knowledge with the logical axioms. 

In this way, each design stage is formally represented by a logical theory, which we might think of as 

the theory of the artefact. 

This new proposal has several nice features. First, it is grounded in criticisms in the previous section 

and so meets several of those objections. Second, it is much simpler than the HW interpretation, and ties 

design to more fundamental logical objects. It also generalizes the HW interpretation, so that any 

existing examples can be adapted to fit our proposal. 

More specifically, we start with some basic concepts in the language 𝕃. We can use logical connectives 

to combine these basic concepts into more complicated formulas. The collection of all these formulas 

(or all those we have considered thus far) determines our set of concepts C. Similarly, we can think of 

the axioms as basic knowledge, but these can be combined through proof to yield new theorems. The 

knowledge base K should be thought of as the set of such proven or provable theorems. 

First of all, notice that we avoid the mathematical and linguistic concerns of the previous section. 

Mathematically, the logical language which was given short shrift in the HW interpretation is now 

absolutely central, forming one of the twin pillars of C-K theory. Linguistically, unicorns and trees 

remain concepts for us, regardless of what we might know about them. 

Next consider the extent of the HW interpretation. Their concepts--the undecidable propositions--are, in 

particular, written as formulas. This means that all of concepts of the decidability interpretation are also 

ours, though the reverse it not true. As for knowledge, this is associated with the propositions known to 

be true or false, while we associate them with the propositions known to be true. However, this is only 

a technical distinction; a proposition is provably false if and only if its negation is probably true. This is 

obvious in classical (Boolean) logic by the rule of double negation, but also holds in more general 

intuitionistic contexts (e.g., open-world semantics). Thus the C and K in our new interpretation are 

strictly more inclusive than the alternative. 
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The most important advantage of our new interpretation is its simplicity. Language and axiom sit at the 

very core of logic; they are the first concepts introduced in a formal presentation. Thus, our interpretation 

embeds design at the heart of logical analysis. In addition, logical languages and axioms are finite (or 

finitely generated), so that we can calculate and compute with them. 

Contrast this with undecidability. Though of undeniable importance in modern logic, undecidability is 

a much more sophisticated idea, requiring explication of formal proof before it can even be defined. 

Moreover, constructions like forcing (used to verify undecidability) are inherently infinitary, limiting 

their application in real-world domains. The simpler interpretation we propose should make it easier to 

formalize practical applications of C-K theory in a logical context. Building up a base of such examples 

and case studies is a critical area for future research. 

5 CATEGORY THEORY 

In this section, we introduce some ideas from a branch of mathematics called category theory with an 

eye towards formalizing the dynamical component of C-K theory: the four design steps C→C, C→K, 

K→C, K→K. 

More generally, we believe that CT provides the language and theory to support new tools for building 

and managing the sorts of logical models that design requires. It's application here is quite tempting: CT 

is a theory of arrows. A proper introduction to CT is beyond the scope of this paper and we omit many 

details (in particular, discussion of identity arrows). See Spivak (2014) for a good introduction. 

A category 𝒞 contains two types of entities: objects (𝑋, 𝑌, 𝑍, …) and arrows (𝑓: 𝑋 → 𝑌, 𝑌
𝑔
→ 𝑍, … ). 

Intuitively, objects can be thought of as states or types while arrows are processes or functions which 

operate on them. Every arrow has an input and an output (called the domain and codomain), indicated 

by writing 𝑓: 𝑋 → 𝑌. So far this is just a directed graph. The critical feature of a category is a composition 

operation that allows us to chain the output of one arrow to the input of another: 𝑓. 𝑔 means ``do 𝑓, then 

𝑔.'' 

The most familiar example of a category is Sets, the category of sets and functions; given two functions 

𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍, the composite function 𝑓. 𝑔 is defined by the usual formula 𝑔(𝑓(𝑥)). Many 

other ``concrete'' categories are constructed by enhancing sets and functions with additional structure. 

Vect, the category of vector spaces and linear maps, is a typical example. In other categories, the objects 

and arrows may be completely abstract, lacking any semblance of internal structure. For example, any 

directed graph defines a category where objects are nodes and arrows are paths of edges; to compose 

we just concatenate paths at their endpoints. 

Although the notion of a category is exceedingly abstract, this is necessary for its application across 

such a wide range of disciplines. Table 1 provides a suggestion of the breadth of categorical analysis. 

Composable processes occur throughout mathematics and the sciences, and this means that all can be 

analyzed through the lens of CT. 

Our analysis here will rely on the last two entries in the chart. One strand comes from the categorical 

approach to formal logic, allowing us to represent logical theories as categories. The other is more 

radical: CT is self-referential. This means that we can use the machinery of category theory to structure 

and study categories themselves, and hence any of the other entities from physics and logic and the rest 

which can be rendered in these terms. 

Table 1. Categories in familiar contexts 

In … …the objects are… … and the arrows are… 

Physics Systems Processes 

Computer Science Datatypes Computable functions 

Data Science Tables Foreign keys 

Statistics Probability spaces Stochastic kernels 

Logic Formulas Definable functions 

Category theory Categories Functors 
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6 CATEGORIES IN LOGIC 

So far we have argued for a new interpretation of the concepts and knowledge in C-K theory, as the as 

the language and axioms of a logical theory. This interpretation is, in a sense, static: at any particular 

stage of design, we can formally represent the state of the design as a logical theory. Now we would like 

to use category theory to capture the dynamical aspects of design steps. 

Our strategy is to use first represent logical theories as categories, and then use the mappings of 

categories, called functors, to represent mappings between theories. In fact, functors are already 

important from a static perspective, to capture the relationship between language and theory. We can 

only sketch the details her, but see Makkai and Reyes (1977) for a detailed presentation. 

The first step is to turn a logical theory 𝕋 into a category 𝒯. Speaking (very) roughly, an object of 𝒯 is 

a formula 𝜑(𝑥) (open, with free variable(s) 𝑥) and an arrow 𝜎: 𝜑(𝑥) → 𝜓(𝑦) is a definable function 

(total, single-valued relation) 𝜎(𝑥, 𝑦). Functional relations are closed under the composition of relations, 

∃𝑦. 𝜎(𝑥, 𝑦) ∧ 𝜏(𝑦, 𝑧), so we can take this as a definition of composition in 𝒯. 

An important special case is ℒ, the category generated by the empty theory (no axioms) and associated 

with the language 𝕃 itself. This category has the special property of being freely generated which makes 

them easier to analyze. With the same language, 𝒯 and ℒ have the same formulas and so the same 

objects. However, 𝒯 may have arrows that do not occur in ℒ, and arrows which are distinct in ℒ may be 

provably equal in 𝒯. 

As indicated in the last section, categories themselves are the objects of a (meta-)category Cat; the 

arrows between them are called functors. Furthermore, the logical connectives and quantifiers (∧,∨, ¬, ∃, 
etc.) correspond to structural features of a category such as Cartesian products (∧), image factorization 

(∃), etc. The particular case of classical, first-order logic corresponds to Boolean, coherent structure, 

and we restrict our attention to structure-preserving functors. 

 

Definition. A functor 𝐹: 𝒞 → 𝔇 sends objects to objects and arrows to arrows in such a way that 

• ℎ: 𝐶 → 𝐶′$ in 𝒞  ⟹  𝐹(ℎ): 𝐹(𝐶) → 𝐹(𝐶′) (domain/codomain coherence) 

• 𝐹(ℎ. 𝑘) = 𝐹(ℎ). 𝐹(𝑘)  (compositionality) 

• 𝐹(𝜑 ∧ 𝜓) = 𝐹(𝜑) ∧ 𝐹(𝜓), 𝐹(∃𝑥. 𝜑) = ∃𝑥. 𝐹(𝜑), …  (structure preservation) 

 

One good class of examples define the set-theoretic semantics of first-order logic. For simplicity, 

consider a language 𝕃 with one sort 𝑋 and one relation 𝑅(𝑥, 𝑥′). An 𝕃-structure 𝑀 consists of an 

underlying set |𝑀| and an extension 𝑅𝑀 ⊆ |𝑀|𝑛. Given this information, we can define the extension 

of any formula recursively in terms of intersection, union, direct image, etc. This yields a functor 

ℒ →Sets sending each formula to its extension. The recursive specification merely recasts the structure 

preservation requirement, and composition is preserved because it is defined from the logical structure. 

The relationship between language and theory can also be expressed as a functor 𝑞: ℒ → 𝒯. 

Furthermore, the satisfaction relation between the structure 𝑀 and the theory 𝕋 can be expressed in 

terms of functors. 𝑀 satisfies 𝕋 (𝑀 ⊨ 𝕋) if and only if the functor 𝑀 factors through 𝒯, i.e. there is 

another structure-preserving functor �̅�: 𝒯 →Sets such that 𝑀 = 𝑞. �̅�. 

One major advantage of the categorical approach is that it provides a precise, detailed language for 

analyzing functorial relations (see Makkai and Reyes (1977) for definitions). For example, axiomatic 

extensions 𝕋 ⊆ 𝕋′ (in the same language) determine a class of functor 𝒯 ↠ 𝒯′ which are (essentially) 

surjective on objects and full on subobjects. These maps, indicated by double-headed arrows, are called 

quotients; they represent a strong categorical version of surjectivity which captures the notion of "same 

language" (up to definitional equivalence). 

In contrast, linguistic extensions 𝕃 ⊆ 𝕃′ induce functors ℒ ↣ ℒ′ which are often conservative 

(equivalently in the context, faithful). More generally, conservative funtors 𝒯 ↣ 𝒯′ provide a categorical 

analog for injectivity, and indicates that the new theory does not collapse or identify any distinctions 

which could be made in the original. And just as any function can be factored as a surjection followed 

by an injection, any structure-preserving functor can be factored as a quotient followed by a conservative 

map. Thus, CT provides a language for lifting the structural methods in set theory to more sophisticated 

contexts. 
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7 THE CATEGORY OF DESIGN STEPS 

With the categorical machinery of the last section in hand, we are ready to provide a formal definition 

of a category of C-K designs. We then consider the four design steps identified by C-K theorists, and 

show how these fit into our proposed definition. In some sense, we can regard these as the atomic 

operations from which more complicated design steps are constructed. To justify this claim, we prove 

an easy factorization theorem which asserts that any design step can be factorized into a purely linguistic 

extension followed by a purely axiomatic extension. 

 

Definition. The category 𝔇 of C-K designs (in a classical, first-order ambient logic) is defined as 

follows: 

• An object 𝐷 ∈ 𝔇 consists of: 

a functor 𝑞: ℒ ↠ 𝒯 where, 

– ℒ and 𝒯 are structured (Boolean, coherent) categories, 

– ℒ is freely generated by a first-order logical language, 

– 𝑞 is structure-preserving and a quotient. 

• An arrow 𝐹: 𝐷 → 𝐷′ (figure 2) consists of 

– a pair of functors 𝐹𝐿: ℒ → ℒ′ and 𝐹𝑇: 𝒯 → 𝒯′ where 

– both 𝐹𝐿 and 𝐹𝑇 are structure preserving, and 

– the resulting square commutes: 𝐹𝐿 . 𝑞′ = 𝑞. 𝐹𝑇. 

• Composition in 𝔇 is defined by composition of functors: 

– (𝐹. 𝐺)𝐿 = 𝐹𝐿 . 𝐺𝐿 and (𝐹. 𝐺)𝑇 = 𝐹𝑇 . 𝐺𝑇. 

 

In a map of designs, the language functor ℒ → ℒ′ tells us how to interpret the basic language of the 

initial design in terms of (possibly complex) formulas in the new language. The map of theories 𝒯 → 𝒯′ 
ensures that the axioms of the new design entail the axioms of the original design, relative to the 

interpretation provided by 𝐹𝐿. In fact, the theory functor is completely determined by the language 

functor; for a given 𝐹𝐿 there may not be an associated 𝐹𝑇 (in which case there is no map of designs), but 

if there is such a map it is unique. This follows from the fact that 𝑞 is a quotient functor. 

Now we would like to examine the relationship between our category of designs and the C-K theorist's 

four design steps: C→C, C→K, K→C, K→K. 

First consider the C→K design step. When we first introduce a new concept into our C-K model, the 

next step will be to pin down the new concept by specifying what we already (implicitly) know about 

it. For example, we might have a concept of parenthood as a binary relation 𝑃(𝑝, 𝑐) where 𝑝, 𝑐: 𝑃𝑒𝑟𝑠𝑜𝑛. 

As it stands, this is a purely linguistic/conceptual structure, but we also know things about parenthood, 

such as the fact that every child has a parent: ∀𝑐∃𝑝. 𝑃(𝑝, 𝑐). 

In terms of our formal representation, C becomes ℒ, K becomes 𝒯, and the C→K step becomes the 

quotient functor 𝑞: ℒ → 𝒯. Thus, under our proposed interpretation, a C→K step is already present in 

every design stage. Once we understand concepts as purely linguistic, without connection to 

(un)decidability, we recognize that concepts must always be supplemented with knowledge. Formally 

speaking, this means that the C→K design step is essentially trivial, acting by the identity at both the 

linguistic and theoretical levels (see Figure 3). 

Next consider a knowledge extension K→K. According to our rubric, this should correspond to a functor 

𝒯 → 𝒯′. Such a functor fits neatly into a design arrow in which the linguistic functor is the identity. 

Most often, this results from an extension of theories 𝕋 ⊆ 𝕋′ through the addition of one or more axioms 

(written in the same language). More generally, we do not require axiomatic extension, so long as the 

original axioms are entailed by the new. For example, we might specify in 𝕋′ that a child has exactly 

two (biological) parents, from which our first axiom would follow.  

The analysis of concept expansion appears similar, but hides an important difference. We expect that a 

C→C design step should correspond to a functor ℒ → ℒ′. Again, we can define such a functor from 

either a simple linguistic extension 𝕃 ⊆ 𝕃′, or by sending each piece of the initial language to some 

formula of the latter. If we are working in a purely conceptual setting, with no axioms, then we can 

regard this as a design step in which the vertical quotients are trivial. However, if our initial state is a 

full design with axioms, then this conceptual expansion will leave us in an inconsistent state. After the 

Figure 2. An arrow in 𝔇 
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conceptual expansion we are left with a diagram 𝒯 ↞ ℒ → ℒ′, without enough information to attach a 

theory to the extended language. 

 

 

Figure 3. C-K design operators as arrows in 𝔇 

The path to a solution passes through the fourth operator K→C. According to our proposal, we should 

think of a K→C design step as a functor 𝒯 → ℒ′. Unfortunately, such a functor typically cannot exist, 

as it would require proving the axioms of 𝒯 without the use of any axioms in ℒ'. At best we could expose 

the original language ℒ and define an interpretation ℒ → ℒ′, at which point we are again in the 

problematic state 𝒯 ↞ ℒ → ℒ′. 
From this data we can construct a pushout; this is a categorical operation analogous to a union in the 

category of categories. This allows us to construct one new object and two new arrows (one of which is 

a quotient) as shown in figure 3. Omitting a precise definition of the pushout, we can say that it is, 

roughly, the smallest theory which (i) interprets the language ℒ′, (ii) satisfies the axioms of 𝒯, and (iii) 

which aligns the two interpretations of ℒ inside 𝒯 and ℒ', respectively. 

Though the four C-K design steps can, to some degree, be embedded in our category of designs, some 

of them fit a bit awkwardly. The C→K step, though important to the notion of a design stage, is 

essentially trivial as a design step. The C→C expansion makes sense as an associate between languages, 

but does not yield a full design step at the level of theories. Thus, from the functorial perspective, it 

appears the source of a design step is less important than its target. In other words, we should pay careful 

attention to what is changed in a design step (language, theory or both), but less to what triggered the 

step. 

To this end, we can define two important classes of purely linguistic and purely theoretical design steps. 

The former are constructed from a linguistic functor and a pushout operation, while the latter consist of 

theoretical functors without modification to the language. Furthermore, we have the following easy 

theorem, which follows more-or-less directly from the definition of the pushout: 

Theorem. Any design step 𝐹: 𝐷 → 𝐷′ can be factored into a purely linguistic step followed by a purely 

theoretical step. Moreover, the factorization is unique up to categorical equivalence of the theoretical 

factor. 

Proof. Given the design step 𝐹, we first apply the pushout operation to the linguistic functor 𝐹𝐿 and the 

initial quotient 𝑞. This allows us to build a purely linguistic extension, the left-hand square (i) in figure 

4. The pushout is unique up to equivalence of categories. Now we can apply the universal mapping 

property of the pushout (Spivak, 2014) to the theoretical map 𝐹𝑇 and the latter quotient 𝑞′. This allows 

us to construct (uniquely up to natural isomorphism) the dashed arrow drawn in Figure 4. The resulting 

square (ii) is a purely theoretical extension, completing the proof.  

8 CONCLUSION 

In this paper, we argued against the HW interpretation of C-K theory based on several criteria: a 

linguistic mismatch, a technical omission and a (lack of) pragmatic application. Instead, we associate 

logical designs with the language and axioms of a logical theory, which we may think of as a ``theory 

of the object''. Based on this association, and borrowing tools from categorical logic, we defined a 

category of design processes, and identified interpretations for the C-K design operators inside this 

category. 
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Figure 4. The factorization of a design step 

 

This is only a first step towards a true formalization of C-K theory, and this opens up many avenues for 

future research. Perhaps most pressing among these is the formal modeling of actual case studies, so 

that we can see if our interpretation truly matches up with the actual design processes of C-K theory. 

After all, our main complaint for the HW interpretation was that it has not been very useful in practice. 

Thus, the development of case studies would both validate our proposed interpretation and identify areas 

where it needs further elaboration. 

There is also more theory to be developed. The categorical mathematics introduced in this paper has 

direct bearing on the phenomena of expansion, and the creation of new products, which C-K theory was 

designed to explain. In particular, CT has been used to analyze the duality between logical theories and 

their instances. Under this duality, quotient functors (axiomatic expansions) correspond to the narrowing 

of semantic possibilities, as in classical decision theory, but the faithful functors generated by linguistic 

extension lead to precisely the sort of expansion recognized by C-K theorists. 

Another area for future consideration concerns the genesis of design processes, which fit into our 

category of designs less easily than the effects of those processes. We believe that C-K theory may 

conflate two different types of knowledge, axiomatic and semantic/observational, and that 

distinguishing between these may lead to a better understanding of design inspiration. 
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