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Abstract 

The case is made that current functional representation methods for engineering systems and in 

particular Function-Behaviour-State models rely on defining hierarchies of states, behaviours and 

functions that in turn rely for a large part on subjective designer input. With the goal of automating the 

functional description and analysis of such systems, basic concepts of an Idea Algebra are introduced, 

which allow the peer-to-peer non-hierarchical functional coupling of Ideas such as components and 

interfaces into so-called Synaptic Networks and the objective definition of system functions and 

subfunctions in terms of the states of the basic Ideas forming said networks. By offering a robust 

mathematical definition for system topology and functionality and dispensing with several subjective 

steps required by current methods, the presented framework opens significant possibilities for 

automating functional analysis. 

 

Keywords: Design methodology, Product modelling / models, Functional modelling 

 

Contact: 

Prof. Christos Spitas 

Delft University of Technology 

Design Engineering 

The Netherlands 

c.spitas@tudelft.nl 

 

21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED17 
21-25 AUGUST 2017, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA 
 

 

 

Please cite this paper as:  

 Surnames, Initials: Title of paper. In: Proceedings of the 21st International Conference on Engineering Design (ICED17), 

Vol. 4: Design Methods and Tools, Vancouver, Canada, 21.-25.08.2017. 

219



  ICED17 

1 INTRODUCTION 

1.1 Functional modelling 

Functional modelling is a set of processes that helps engineers to identify and analyse the ways in which 

engineering systems manifest various behaviours and produce their intended functions. Most frequently, 

the point of view is that of quantified function, often seen from the point of view of reliability, which 

concerns itself with the failure of desired functions, their causes of failure and the propagation of failure 

in engineering systems. 

The function of a system is generally decomposed into sub-functions, which are causally connected. 

With regard to reliability in particular, the main goal of the analysis is to prevent or to make a prediction 

of the fault conditions so that the correct actions can be taken (at either the level of remedial actions for 

a given system that is observed to have reliability problems, or preventively, early in the design stage) 

to ensure the preservation of the functionality of the system. There are many reliability analysis methods 

that are used in engineering, including Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis 

(FTA) and Bayesian Networks (BNs), however other methods used in the context of knowledge-based 

design, such as e.g. Function-Behaviour-State (FBS), have also been applied to the problem. 

In this paper we shall principally consider the question of automating functional analysis and thus the 

focus will be on how to move from knowledge representations to mathematical models of system 

function with as little designer intervention/ supervision as possible. FMEA, FTA and BNs will therefore 

not be discussed further, in favour of FBS and an Idea Algebra (IAlg) that will be introduced specifically 

for this purpose. 

1.2 Engineering design knowledge representation methodology 

Function modelling is a class of techniques that are used to analyse development model of products, 

processes and objects from the point of view of functionality. The framework is also used to increase 

the communications between the engineers in the design process by providing a general description of 

a system. There are several different reported functional modelling methods, which have been developed 

by many researchers (Erden, 2008). Among these, function modelling techniques are a class of 

techniques that are used to create, modify and analyse the development model of products or processes 

in terms of their functionality. Function-Behaviour-Structure and Function-Behaviour-State are among 

the most well-known implementations of this paradigm.  

The Function-Behaviour-Structure model (Gero, 2007) describes a design process as a process of 

transforming the function of a system to a structure through the behavioural information. The Function-

Behaviour-State (FBS) model (Umeda, 1990, Van Houten, 1998) has conceptual similarities to the 

former, but does not explicitly represent structure, but instead more explicitly considers the physical 

states and chemical properties of the system. As a result, the advantage of current implementations of 

Function-Behaviour-State over Function-Behaviour-Structure is that they more readily admit 

computational models to be generated, which is very relevant to the scope of the present study. There is 

no known automated implementation of other variants of the Function-Behaviour-Structure method to 

reliability analysis, or other quantified functional analysis. Henceforth, therefore, we shall only be 

concerned with Function-Behaviour-State (FBS). 

1.3 Automation of functional and reliability analysis 

Van Houten et. al. (1998) have implemented a method for fault and deterioration diagnosis of products 

using the Function-Behaviour-State model as a basis for data representation. Echavarria et. al. (2007) 

have introduced a fault diagnosis system for wind turbine using an FBS based model-based reasoner 

and functional redundancy designer models (Umeda, 1994). In these cases, the starting point is a 

functional representation of the system. Explicitly, the hypothesis is made (Van Houten, 1998) that there 

is a 1-1 mapping between structure (elements) and function. 

Lapp and Powers (1977) developed an algorithm that transforms a directed graph into a fault tree, Taylor 

(1982) introduced a method that transforms a component model based on the mini fault trees into a fault 

tree. Bossche (1991a, 1991b, 1991c) developed a method that constructs a fault tree from models of 

components that were developed based on the system description. Latif-Shabgahi and Tajarrod (2009) 

implemented a method that constructs a fault tree from a Simulink file. Moreover, a fault tree can be 
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constructed in the Simulink environment. Wang et. al. developed (2002) a tool that automatically maps 

a system block diagram into a fault tree. Khan et. al. (2002) developed an algorithm for generating of 

probabilistic fault trees. 

In all cases it can be seen that the starting point for functional and reliability analysis is a functional 

representation of the system: Therefore, it assumes that the mapping of structure and topology to 

function has already been done. This is a particularly problematic assumption, especially in the case of 

complex systems and multiply coupled system functions, where a single physical component may be 

contributing to more functions and each function may require more components; therefore, the requisite 

mapping of topology to function is non-obvious, and certainly not 1-1. 

1.4 Idea Algebra 

To overcome these perceived deficiencies, the authors have previously proposed the introduction of a 

generalised class of Ideas, which can encompass all the potential elements of a system model at any 

level of abstraction (Spitas 2011, 2012, 2013). Components (hardware, software), states, behaviours, 

functions, are all Ideas. A main characteristic of such a class is that it facilitates and encourages the non-

hierarchical –and potentially ad-hoc- definition of Ideas. This departs from all current paradigms, that 

must by definition define hierarchies of functions. 

In this paper, we shall demonstrate how this class of Ideas may be equipped member functions and 

operators suitable for automatic functional analysis, forming an Algebra. An obvious advantage of this 

approach is that it allows the elimination of several steps involving the identification and hierarchical 

organisation of functions and function-component relationships; steps that otherwise require substantial 

and potentially subjective designer intervention. 

2 FUNCTION-BEHAVIOUR-STATE AND ITS USE IN FUNCTIONAL 

ANALYSIS  

The Function-Behaviour-State model, as introduced by Umeda et.al. (1990) and elaborated in 

subsequent publications discussed previously, is represented via a hierarchical tree, where the design 

information is classified into three types: function, behaviour and state. The framework considers 

systems only from the physics point of view. 

 

State 

(to highlight that the state and structure is different things by itself, it is the main difference between the 

FBS model and the IA model) 

According to the model, the structural and state information is presented as a set of States, which have 

a set of parameters: a set of entities, a set of attributes and a set of relations, where an entity is represented 

as a real world entity identifier, an attribute is described as scientifically observable properties of the 

entity, like chemical, physical, geometrical, etc. and a relation is presented as “what relates attributes, 

entities, or relations”. 

There is no reported method for rigorously representing/ naming states, so in this paper we shall use the 

descriptor Si, where i is any suitable integer counter. 

 

Behaviour 

The authors of the model identify behaviour as “sequential one and more changes of states”. The 

behaviour is considered as a State which is captured for a moment. As the states can be produced 

infinitely, the change of States are produced by some rules, like physical laws, which are defined as “a 

rule which determines behaviours of an entity under a specific condition of states”. The relationship 

between the Behaviours and States are called B-S relationship. 

There is no reported method for rigorously representing/ naming behaviours, so in this paper we shall 

use the descriptor Bi, where i is any suitable integer counter. From the B-S relationship definition, we 

can define such a relationship as a mapping: 

𝑆𝑖(𝑡) → 𝐵𝑖 (1) 

 

Views 
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It is a type of representation for behaviours and states which describes the analysis of a system depending 

on the domain. The same behaviour can be interpreted using different engineering knowledge, also it 

relates to the state. The States and Behaviours can be described only after the view is chosen. 

 

Function 

The function is “a description of behaviour abstracted by human through recognition of the behaviour 

in order to utilise it”. It’s an abstracted behaviour which is described as “to do something”. Гab 

corresponds to the human process of recognition and abstraction of behaviour to the function, which is 

called F-B relationship. 

There is no reported method for rigorously representing/ naming functions, so in this paper we shall use 

the descriptor Fi, where i is any suitable counter. From the F-B relationship definition, we can define 

such a relationship as a mapping between the entire sets comprising all Bi and Fi: 

{𝐵{… }} → {𝐹{… }} (2) 

 

The framework comprises two types of parts which are presented as relationships: the subjective and 

objective parts. The F-B relationships and the views are identified subjectively, whereas the B-S 

relationships are identified objectively by using the physical laws. The main function is decomposed 

into sub-functions and it has a hierarchical structure. 

 

The question then remains how to identify the functions, which is, as discussed, a largely subjective 

process. The Functional Evolution Process proposed for this purpose by Shimomura et. al. (Shimomura, 

1998) includes three steps: the first step is a functional realisation which represents a process that 

retrieves physical descriptions from functions, the second step is a functional evaluation which describes 

a process of function reliability assessment and the last step is a functional operation which represents 

a process of design improvement by operating the functions. 

 

FMS Modifier Diagrams (FBS/m) can thus be drawn, utilising “decomposed into” and “conditioned by” 

relations. 

3 IDEA ALGEBRA: FOUNDATION AND APPLICATION TO FUNCTIONAL 

ANALYSIS 

3.1 Definitions and concepts 

For the purpose of representing engineering systems, we define as an Idea anything that is currently or 

potentially present to consciousness. 

Consequently, all elements of these systems (having physical/ material manifestations) are Ideas; (non-

physical/ non-material) relationships are Ideas; physical states are Ideas; behaviours and functions are 

Ideas; design objectives are Ideas; etc. 

Thus we define a generalised class of Ideas, which can be used to identify and reference any aspect of 

design. Equipping said class with operators results in the definition of an Idea Algebra (IAlg). 

3.2 Data representations 

3.2.1 Ideas as class elements 

An Idea, in the form of a class element, is a mathematical representation of a cognitive construct. In a 

formal computer programming context this may be, at its most rudimentary definition, simply a name 

pointing to a block of data (or null), denoted as Ii, or Ii(), where i is any suitable counter. Such an idea 

does not externally reference other ideas as its arguments. Within the namespace/ context of Ii any 

number of ideas may be defined locally, having appropriate meanings for the context of Ii only. i.e., 

given the definition of Idea, the probability p of Ii being currently present (True) (as opposed to not 

being currently present (False)) would be Ii.p. In the context of formal computer programming, any Idea 

such as p would be a member of Ii. 
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3.2.2 Values of Ideas 

An Idea can be subjected to evaluation, returning one or more member values that may be constant or 

variable, if the idea is equipped with methods that allow the determination of said values. The value can 

be any simple or complex representation (and by definition is itself an Idea). By way of being subject to 

evaluation, Ideas are in a generalised way identical to functions and in a formal computer programming 

context can be represented as such. 

3.2.3 States of Ideas 

The values of Ideas may be used to indicate States of said Ideas. A State can refer to a physical state 

(e.g. in the Lagrangian or Hamiltonian sense), or a logical state (True or False), or in fact anything 

potentially variable that may be used to characterise the idea in a particular instant. 

 

Here we see the first possibility for mapping to FBS, as this definition of State is compatible in both 

FBS and IAlg. The difference is that in IAlg, State is just a member of an Idea object, represented as 

Ii.Sj, whereas in FBS it would be an original entity, represented as Si. The possibility in IAlg to assign 

various different States to the same Idea becomes obvious, whereas in FBS there is no such explicit 

possibility. 

3.2.4 Ideas as arguments to ideas. Synapses 

Furthermore, an Idea Ij may reference other Ideas defined independently from it and external to it, i.e. 

Ii, in which case it can be denoted as Ij(Ii). We term such an assignment of an argument to an Idea a 

‘synapsis’. For all intents and purposes an Idea with synapses behaves like a function with arguments, 

whereas an Idea without synapses behaves like a function without arguments. However, whereas 

traditionally the arguments of a function must be decided/ declared upon its definition, the arguments 

for any Idea are situational (and thus volatile); i.e. any Idea may be declared with no arguments and later 

subjected to modification, or an Idea may be stripped of its arguments. This is a unique property of the 

class of Ideas: In all other existing engineering data representations (e.g. Gero 2007, Umeda 1990), the 

equivalents to Ideas are always defined within a class hierarchy (i.e. component, subsystem, system etc), 

whereas obviously any hierarchies built among ideas are situational and volatile. 

Thus defined, synapses are used to link Ideas into interacting clusters/ systems. In formal computer 

programming terminology, Ideas are in principle agnostic to anything that occurs outside their own 

scope, so synapses allow Ideas to expand their scope to the ideas that are linked to them as arguments. 

At the same time, Ideas that are linked arguments to other Ideas also share this awareness. 

Synapses thus allow the formation of hierarchies (systems), and of peer-to-peer interfaces between two 

or more Ideas. If Ii, Ij, Ik, … are ideas, then Ii(Ij,Ik,…) can be used to define a hierarchy (i.e. an 

assembly) from Ij, Ik, … or to refer to a physical interaction (i.e. an interface) between Ij, Ik (or possibly 

more than two ideas. In both cases the synapsis is the following mapping: 

{𝐼{… }−{𝑖}} → 𝐼𝑖 (3) 

Typically, Ii as a hierarchy may not have any special purpose other than to express the existence of the 

hierarchy. However, Ii as an interface will typically be equipped with member functions (i.e. laws of 

physics) that couple its State and the States of its arguments. In the context of IAlg, this allows States to 

become connected and interact, not requiring the explicit definition of Behaviours, or Functions. 

3.2.5 (Non-)hierarchies of ideas 

Looking at the previous definitions, probability p, seen as an Idea, need not be defined as a member of 

any given Ii, but may be defined independently from it and externally to it, thus it may also be 

appropriate to write p(Ii). The subtle but important difference is that Ii.p implies a hierarchical 

relationship (p is a member of Ii and defined internally to it), whereas p(Ii) indicates a situational 

relationship, in that p is defined independently from and externally to Ii. 

So in general for any two related Ideas, Sj(Si) can be interchangeable with Si.Sj, thus formal and 

informal hierarchies are interchangeable ad hoc. This lack of imposed hierarchy in the class of Ideas 

(although it can still be emulated where desired), is proposed as an essential characteristic that makes 

Idea class objects similar to the human ideas, here denoted as used in design: able to transform at will, 

allowing generalisation, specification and ultimately design freedom, exploration and creativity. 
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3.3 Behavioural coupling- Idea state propagation (causally driven) 

3.3.1 Hierarchical causalities and functionality 

Normally the hierarchy for causalities is determined explicitly. Just as human cognition must be used to 

map the structure of an engineering system to a hierarchically organised topology, it must also be used 

to determine a hierarchy of events and functions describing the state changes of the engineering system: 

Functions of different levels must typically be organised in hierarchies of their own, building up to the 

most important system level functions. This is the underlying concept of FTA, FMEA, DSM, FBS and 

all state of the art methods for systems analysis in general. 

3.3.2 Behavioural coupling: Ad-hoc causalities 

The concept of behavioural coupling fundamentally re-addresses this approach: If the topology of an 

engineering system is known (without any knowledge of hierarchy) and the basic functional interactions 

between ideas and their arguments are known (again without any knowledge of hierarchy), can the 

system function states be calculated automatically? If so, this would eliminate the need to define/ 

understand functional -and even structural- hierarchies and along with this much of the present demand 

on human cognition. 

Behavioural coupling essentially enables the automatic and ad-hoc propagation and interaction of state 

information through the synapses that link a network of ideas, as follows: 

 

Argument assignments to Ideas can create causal relationships between the States of all involved Ideas, 

if they are equipped with suitable member functions. We consider in principle that not only is the State 

of an Idea affected by the States of its arguments, but in fact that a bi-directionally coupling exists, such 

that if an Idea is an argument to other Ideas, its State can be affected by the states of said Ideas. 

Furthermore, one State of an Idea can be affected by other States of the same Idea; this becomes 

important when it is necessary to couple e.g. structural states to functional states. 

{𝐼𝑖. 𝑆{… }−{𝑗}, 𝐼{… }−{𝑖}. 𝑆{… }} → 𝐼𝑖. 𝑆𝑗 (4) 

 

Considering that State information propagates at finite speed through the system, also in accordance 

with causality, we consider that the State of an Idea will be affected only by precedent States of other 

Ideas and itself, leading to the following mapping in the time domain: 

{𝐼{… }. 𝑆{… }(𝑡𝑛)} → 𝐼𝑖. 𝑆𝑗(𝑡𝑛+1) (5) 

3.3.3 The concept of non-hierarchical functionality 

In the context of functional analysis, the described causal framework for behaviour coupling affords the 

significant advantage that component states can be affected by system states, as opposed to the one-way 

state propagation used in all FTA and FMEA models, thus providing a highly realistic approach in the 

case of (multi)physical systems. 

 

State propagation testing to determine behaviourally significant subsystems and associated behaviours 

and functions 

We propose that (sub)systems of any behavioural significance manifest a strong coupling of the states 

of the ideas that comprise them. Conversely, a (sub)system definition that is not characterised by such 

a coupling will likely be of little behavioural significance. 

Following from this proposition and considering that behaviour is the sequential-/ time-function of state, 

we hereafter propose a ‘state propagation testing’ method to automatically identify behaviourally 

significant subsystems within in a given system. The method is implemented as follows: 

• We assign initial State values (the initial conditions) across all Ideas of the system. 

• We disturb this steady state by imposing to any single Idea in the system a different State value 

and thereafter allow the Sates of all Ideas in the system to re-evaluate, according to their member 

functions (e.g. the laws of physics). The Ideas whose states changed as a result can be understood 

to form a functional subsystem whose behaviour is dependent on the reference Idea. 

• The same process can be repeated for several or all Ideas in the system. Typically, only a limited 

number of distinct subsystems will emerge from this process. 
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This method can be used to automatically identify behaviourally significant subsystems and their 

associated behaviours and functions. Instead of considering the subjective mapping Гab that is required 

by the FBS model, in an IAlg it is possible to map Behaviours to States and also Functions directly to 

(clusters of) States. 

We accomplish this by considering the following: 

State change can be expressed as a function of time derivatives of said State. However, given the 

definition of State in section 3.2.3 said derivatives can also be considered as States. Given the definition 

of Behaviours as changes of State, as per section 2, it follows therefore that is possible to consider so-

called Behaviour as State. Given then that Functions, as per section 2, are functions of behaviours, it 

follows that they are functions of States. 

It is possible then that a function of any complexity can be mapped to the State of an appropriate Idea. 

E.g. a system-level function could be mapped to a State of the Idea representing the system itself, the 

State representing a functionality of said Idea. For an automotive drivetrain the “propulsion” function 

would involve the entire automobile system, together with the ground. Conventional FBS thinking 

would dictate that to test if this function is achieved, the functionality (States/ Behaviours/ Functions) 

of the entire automobile system (or perhaps only the drivetrain subsystem) would need to be modelled 

and tested. Representing the system with an IAlg, where the interfaces of the automobile system to the 

ground coincide with the interfaces of the drivetrain system to the ground, and in fact the interfaces of 

the four wheels to the ground, it becomes possible and rather obvious to define the “propulsion” function 

instead as the State of these interfaces, where torque is being transmitted. Thus IAlg allows a much 

simpler definition of what is normally considered a high-level function, without ever having to construct 

a hierarchy of Behaviours and Functions for the automobile system. This is only possible because IAlg 

contains intrinsically the functional interrelations of the system topology, whereas FBS dispenses with 

topology, dealing primarily in States. 

 

It follows that a main difference of IAlg from FBS and other existing implementations is that the 

identification of functional dependency does not rely on subjective definition, but emerges from the 

basic dependencies of States intrinsic to the system topology. It is a peer-to-peer, non-hierarchical 

functionality. 

4 GRAPHICAL (NETWORK) REPRESENTATION OF AN IDEA ALGEBRA 

A set of ideas {Ii} can be mapped visually to any set of points or in general shapes in 1-, 2- or 3-

dimensional space, without a priori attributing any particular significance to the location of the particular 

points in said spaces. Synapses (argument references) may be mapped to vectors (directional lines). The 

depiction of such synaptic vectors creates the visual appearance of a network and is shown in Fig. 4. We 

term such a network of Ideas connected via synapses a Synaptic Network (SN). 

 

If the chosen shapes for the synapses are curves and they are made to coincide/ intersect locally with the 

points/ shapes that correspond to their arguments, then the corresponding reference vectors will vanish, 

having their endpoints coincide, leading to an alternative representation of the SN that can be used in 

the manner of intuitive shorthand (Spitas, 2013). Recognising that synapses may be in turn referenced 

by other synapses, or that they may visually appear to intersect inadvertently, this shorthand 

representation does not lend itself well to representing complex SNs and can be error-prone. 
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Figure 1. Graphical representation of a system of Ideas for an automotive drivetrain 
(synaptic vectors are omitted for clarity). The two indicated interface Ideas appropriately 

embody the function “propulsion”, without need for any functional hierarchy within the 
drivetrain. 

5 APPLICATION TO FUNCTIONAL ANALYSIS: AUTOMOTIVE DRIVETRAIN 

To demonstrate the application of the presented model, let us consider the automotive drivetrain 

subsystem illustrated in Figure 1. The system identification is as follows: 

0: ground, 1: engine, 2: gearbox, 3: chassis, 4: differential, 5.1: rear left wheel, 5.2: rear right wheel 

All of these ideas do not reference each other and are completely independent. 

 

The physical interfaces between these ideas are themselves ideas that use the former as arguments. They 

are identified as follows: 

1-2: shaft and couplings, 2-4: shaft and couplings, 4-5.1: shaft and couplings, 4-5.2: shaft and couplings, 

5.1-0: tyre-to-ground contact, 5.2-0: tyre-to-ground contact 

1-3: bolted connection, 2-3: bolted connection, 4-3: bolted connection, 5.1-3: suspension, 5.2-3: 

suspension 

 

Functional analysis is set up automatically by assigning force states (F) to each interface, i.e. (5.1-0).F, 

(5.2-0).F, (5.1-3).F, (5.2-3).F etc and equilibrium equations to each system component, i.e. for wheel 

5.1 the force equilibrium: (5.1-0).F+(5.1-3).F=0, the torque equilibrium (4-5.1).T+(5.1).R ×(5.1-0).F=0 

and so on for other system components. These definitions and equations are generated automatically 

from the system topology, as part of the respective Idea Algebra. Note that not only mechanical states 

and constitutive equations, but any domain of multiphysics as well as structural integrity states can be 

considered as per the functional requirements of the design. 

Back to our example, the propulsion function requires that at least one of (5.1-3).F or (5.2-3).F is non-

zero. Considering (5.1-3).F, as per the previously generated state definitions and equations, loss of said 

function can only happen if (5.1-0).F=0, which in turn can only happen if the interface 5.1-0 loses its 

ability to transmit force, e.g. through sliding or complete loss of contact; or if (4-5.1).T=0, which can 

happen if power is lost throughout the powertrain. A similar consideration applies with regard to (5.2-

3).F. Note that the ideas 1, 1-2, 2, 2-4, 4, 4-5.1, 5.1, 5.1-0, 4-5.2, 5.2, 5.2-0, 0 form paths in the SN that 

correspond to the power transmission and any loss in structural integrity will result in loss of torque. 

 

•5.2 

•0 

•1 
•2 

•4 •5.1 

•3 
1-3 

1-2 
2-3 

4-3 

5.1-3 

5.2-3 
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4-5.2 

2-4 
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Thus the proposed Idea Algebra also helps to visualise failure modes as 'paths' in the SN of the system. 

Importantly, all the mentioned processing and reasoning can be automatic (a straightforward parsing of 

the topology) and no a priori reasoning or anticipation of failure modes is required. 

 

We observe that the actual function of propulsion involves only the ideas 0, 5.1, 5.2, 3 and their 

respective interfaces 5.1-0, 5.2-0, 5.1-3, 5.2-3 (which form two parallel paths), as follows:  

Force is transmitted via interfaces 5.1-0 and 5.2-0; due to the equilibrium of 5.1 and 5.2, the same force 

is transmitted via interfaces 5.1-3 and 5.2-3; and thus the sum of said forces acts on 3, creating 

propulsion. 

In hindsight, this is easy to understand and identify. It is, however, not so obvious a priori, particularly 

to a non-expert. 

 

In the preceding discussion it is thus seen how the proposed Idea Algebra allows a direct mapping 

between system structure and system functionality, complete with automatic definitions of the relevant 

component/ sub-system states (represented by idea states) and constitutive relationships relating said 

states, thereby producing a model of system functionality. Functions of any level (e.g. propulsion in the 

discussed case) can be directly mapped to specific idea state values. 

 

Still looking at the propulsion function, let us now briefly compare the above analysis to how it would 

proceed under an FTA, FMEA, DSM or FBS paradigm. 

FTA would require the definition of various 'basic events' for failures, then connect them via a logic tree 

to form 'intermediate events', up until the 'top event' corresponding to propulsion failure. All of these 

steps would require independent cognitive identification by a human, thereby making this a subjective 

process heavily dependent on expert input. Due to e.g. cognitive bias, it would be easy to miss a less 

frequent failure mode, such as the structural failure of interfaces 5.1-3 or 5.2-3, as most persons, 

including experts, would tend to get fixated on the loss of torque in the powertrain, or loss of contact at 

the interfaces 5.1-0 or 5.2-0. 

FMEA likewise is heavily dependent on the cognitive identification of the possible failure modes (for 

which part of the process there is no automation available) and is just as dependent as FTA on expert 

input and similarly prone to omissions and cognitive bias. 

A DSM would be helpful in revealing the topological links (interfaces) between system elements and 

visualising them in matrix form, but would offer no more insights. It would be dependent on expert 

inference (for which there is no automation available) to determine functional couplings from the 

topological couplings. The SN already offers the insight of the topological couplings by representing 

the interfaces as ideas having other ideas as arguments, but in addition the supporting Idea Algebra 

explicitly and automatically maps the topology to function. 

Finally, FBS would require the hierarchical functional decomposition of the propulsion function. Again, 

this would have to be dependent on the subjective cognitive processing of the system by the designer 

and would be subject to the same limitations as discussed under FTA, FMEA and DSM. Lacking 

automation and subject to cognitive bias, e.g. again it would be easy to miss the significance of the 

interfaces 5.1-3 and 5.2-3 in light of the more obvious findings. Also, the hierarchy itself would not 

provide any particular insight: The Idea Algebra-based analysis showed that the propulsion function is 

actually directly dependent on the force carried by a single pair of interfaces (5.1-3 and 5.2-3) and is 

actually very 'low level' and can be influenced ad-hoc by various other states in the entire system. 

6 CONCLUSION 

This paper presented a number of concepts relevant to automating the functional analysis of engineering 

systems. While the FBS model is a perfectly adequate for the functional representation of engineering 

systems, it requires the subjective definition of functions and uses States as its starting point of system 

description, assuming a 1-1 mapping of system topology to functionality that is in many cases 

oversimplifying and untrue. It was shown that a direct mapping of system topology (components, 

interfaces) to Ideas can be used to define Idea Algebras (IAlgs) that possess a number of desirable 

characteristics: 

• They make possible the ad-hoc connection of Ideas (and their States) via so-called synapses in a 

peer-to-peer network, called a Synaptic Network (SN). 
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• They allow the objective identification of functional subsystems via “state propagation testing”, as 

opposed to the subjective definition/ hypothesis of the same. 

• They allow the definition of all functions directly from States, dispensing with the need to 

subjectively define/ hypothesise functional hierarchies. 

• They allow a simple visualisation of both the system topology and functionality, which is intuitive 

and consistent with network representation conventions -as opposed to the multilevel graphs 

typical of FBS-type models. 

As a result, by offering a robust mathematical definition for system topology and functionality and 

dispensing with several subjective steps required by current methods such as FBS, the presented 

framework opens significant possibilities for automating functional analysis. These will be explored in 

depth in future research. 
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