

A RAPID ALGORITHM FOR MULTI-OBJECTIVE PARETO

OPTIMIZATION OF MODULAR ARCHITECTURE

Sanaei, Roozbeh (1); Otto, Kevin (2); Wood, Kristin (1); Hölttä-Otto, Katja (2)

1: Singapore University of Technology and Design, Singapore; 2: Aalto University, Finland

Abstract

Assigning components and functions to modules early can facilitate faster and higher quality results in

the latter stages of development and manufacturing. Methods have been developed to suggest suitable

architectures using a variety of metrics that measure the ideality of the modularity. However, different

modularity criteria considered are often in conflict with each other and improving one is not achievable

without a compromising effect on another. To investigate this, we explore using multiple metrics such

as defined in the modular function deployment and consider modularization as a multi-objective

optimization problem. We develop here a new multi-objective search algorithm that is able to quickly

find non-dominated Pareto-optimal architectures. The algorithm is demonstrated for a cordless vacuum

cleaner. We further compare the performance of the algorithm with previous work using the IGTA+

algorithm for multiple-objective clustering. The results show the new algorithm improved the

computation time of generating the Pareto-optimal surface by more than two orders of magnitude,

reducing the 54 component vacuum cleaner modularization search from 192 hours to 24 minutes.

Keywords: Computational design methods, Product architecture, Optimisation

Contact:

Roozbeh Sanaei

Singapore University of Technology and Design

SUTD-MIT International Design Centre

Singapore

Roozbeh.Sanaei@Gmail.com

21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED17
21-25 AUGUST 2017, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA

Please cite this paper as:

 Surnames, Initials: Title of paper. In: Proceedings of the 21st International Conference on Engineering Design (ICED17),

Vol. 4: Design Methods and Tools, Vancouver, Canada, 21.-25.08.2017.

169

 ICED17

1 INTRODUCTION

Modular systems are composed of subsystems that perform distinctive functions independently

(Gershenson et al., 2003; Otto and Wood, 2001). Modular architectures can help developing resource-

efficient products in variety of ways. The definition of production modules can have a large impact on

the overall manufacturing cost (Rogers and Bottaci, 1997). Modular platform-based product family

design allows a family of products with distinguishable overall functions and customer perceptions to

be developed using a small set of modules designed before-hand (Du et al., 2001; Gershenson et al.,

2003; Hölttä and Otto, 2005; Stone et al., 1998). Modular products also allow for designing products

that can be updated over time or easily repaired when damaged through module replacement (Dahmus

et al., 2001; Salonen et al., 2008). A product modularized considering recyclability can facilitate

recycling (Gu and Sosale, 1999). Modules from older product generations can be reutilized in

developing new products (Kimura et al., 2001). All of these benefits has therefore drawn the attention

of a wide-range of industries to the modularization approach (Ulrich, 1994).

In pursuing a suitable product architecture modularization, various metrics have been developed to

measure the modularity, and various procedures have been proposed to search for more ‘ideal’ modular

architectures. One approach is manually implementing function based heuristics which were derived

from patterns observed in successful products (McAdams et al., 1999; Stone et al., 1998, 2000;

Zamirowski and Otto, 1999). These heuristics provide alternative suggestions and do not posit any

uniqueness for a grouping of elements (Holtta and Salonen, 2003). This methodology works well for

many products and systems but with larger-scale systems, the number of possible combinations

increases and may leave too many options for a designer. For large-scale systems, finding a

modularization choice using these heuristics may become non-trivial.

An alternative approach to function structure modelling is to use optimization-algorithms that assess a

large numbers of architectures probing for architectures with optimal value of a selected modularity

metric (Sharman and Yassine, 2007; Yu et al., 2003). Finding an ‘ideal’ architecture that considers all

relevant objectives is generally not feasible as objectives often trade-off and improving one is not

possible without worsening another objective (Sanaei et al., 2015). Accordingly, instead of searching

for an ideal architecture, we consider here generating Pareto-frontiers consisting of non-dominated

Pareto-optimal architectures. Pareto-Optimal or non-dominated solutions are optimized such that none

of their objectives can be improved without compromising effect on another objective. However,

common modularity approaches using optimization algorithms can be prohibitively slow to be practiced

interactively, and further computationally the final result can have inaccuracies if the Pareto-frontier is

not convex. Here, we propose and demonstrate an algorithm which is considerably more efficient than

common algorithms available at determining the Pareto frontier of modular architectures, and also does

not presumes convexity of the Pareto frontier. Considerable improvement in the computational

efficiency of the algorithm allows for interactive use, for comparisons and interactive changes to the

architecture.

The subsequent sections of this paper are structured as follows. First, we discuss the related literature

on which this research is based. Then the design principles and the procedure of a proposed new

clustering algorithm is discussed. Afterward, the approach is explored on a high granularity DSM from

a vacuum cleaner. The results is compared with previous works using the vacuum cleaner example.

2 RELATED WORK

Considering product architecture as the configuration, blueprint, or outline by which functional elements

are mapped into physical subsystems, an architectural element may be a single component, a group of

components, or a sub-system (Eppinger and Browning, 2012; Otto and Wood, 2001). For our purposes,

modules are the grouping of elements in a product architecture, each with a well-defined interface(Van

Wie et al., 2001). Design structure matrices (DSM) and graphical function structure diagrams are two

common approaches for capturing and representing product architecture.

In the graphical representation, the high-level function is decomposed into sub-functions and the

architecture depicted as a labelled graph where the nodes and edges represent sub-functions and their

interactions (Stone et al., 1998; Stone and Wood, 2000; Zamirowski and Otto, 1999). These heuristics

do not force fixed axioms for clustering product architectures but provide suggestions on different

alternatives for chunking. Three types of flow interactions are commonly considered amongst elements:

170

ICED17

energy, material, and information flows. In their study of a jet engine, Sosa et al. (Sosa et al., 2003)

expand this to four generic interaction types to include ‘structural’ as that captures mechanical forces,

rather than considering structural forces as a force energy flow.

Another line of research has investigated metrics to assess a product architecture, to help guide a

designer in partitioning. Erixon and Ericsson (Ericsson and Erixon, 1999) have developed modular

function deployment (MFD) and defined several modularity drivers, to assess an architecture. With

MFD, the intent is to find strategic similarities between components and group them into modules. A

special matrix designated the module indication matrix (MIM) captures the strategic intent of each

technical solution or a component. MFD introduces a set of modularity drivers to assess quality of

modularization in different aspects. Modularity drivers are selected based on the product-related

company-specific strategic requirements which implies there is no single 'ideal' architecture. Hölttä and

Otto (Holtta and Otto, 2003) developed similar scores based on earlier heuristics developed by Rechtin

(Rechtin, 1991) and others. A broader list of 23 modularity drivers were introduced by Blackenfelt

(Blackenfelt, 2001). The metrics all relate to strategic issues to be considered at the architectural phase.

While these metrics cover the range of considerations typically needed, they also therefore typically

conflict. Making a low-cost architecture can drive a designer towards integration of components,

making a flexible architecture can drive a designer towards separation of components. We make use of

MFD metrics in this work, as complementary to the modularity heuristic work. Here we assign a score

to each relevant modularity driver and take them as objectives of our modularization.

DSMs are the adjacency matrix of a functional diagram and encompass the interactions among

components and the type of interaction (e.g., energy, material, information, spatial). DSMs provides a

systematic representation that can be easily manipulated with software (Eppinger and Browning, 2012).

On the other hand, function structure diagrams may be easier for manual graphical use as functional

graph models (Sanchez and Mahoney, 1996).

Guo and Gershenson (Guo and Gershenson, 2003) reviewed eight modularity measures in pursuance of

a modularity measure that can be used effectively to guide product redesigns. They introduced a new

measure modality that is independent of DSM size; this measure has positive dependence on interactions

within modules and negative dependence on interactions among them. Hölttä-Otto built on this work

by dividing modularity metrics into two main classes (Hölttä-Otto et al., 2012), connectivity-based

metrics and similarity based metrics. The connectivity class constitutes the majority of metrics

developed to date and is concerned with the coupling of components within and amongst modules. All

connectivity metrics consist of a combination of two main measures in various ways, the first is the level

of independence of a module from the rest of the system and the second is the integrality of a module

within themselves (Hölttä-Otto et al., 2012). The similarity based class of metrics measures the degree

of similarity of elements within modules, this could be similarity in materials, manufacturing processes,

suppliers, functions, life-cycle, etc. Hölttä-Otto observed that few metrics attempt to combine these

measures to increase independence of modules along with degree of similarity elements within modules.

We consider this problem here, and allow for trade-off of multiple metrics.

There are also metrics intended to evaluate individual modules rather than an entire architecture, such

as the Module Strength Indicator developed by (Van Beek et al., 2010). This metric is formulated to

measure the internal connectivity within a module and the external connectivity of the module. They

used MSI as an objective function for optimising architectures utilizing a k-means clustering algorithm.

This algorithm can find a local optimum quickly.

Not all proposed modularity metrics can guide clustering algorithms, two such examples are Singular

Value Modularity Index (SMI) and the and the Non-Zero Fraction (NZF) metric, both introduced by

Hölttä-Otto and de Weck (Hölttä-Otto and De Weck, 2007). The SMI captures the degree of integrality

of components within a product architecture, and the NZF assesses the sparsity of connections among

components. In contrast, the Minimum Description Length (MDL) (Yu et al., 2007) is information

theoretic based metric that measures the amount of information needed to describe module size and

connectivity within each module and among modules. While it has been shown to be effective in driving

module clustering algorithms, it is also dependent on the size of the system, larger systems in general

have better MDL.

Fernandez (Gutierrez, 1998) and Thebeau (Thebeau, 2001) introduced two separate modularity metrics,

one for measuring integrity within modules, intra-cluster-cost, and a second to measure the

independence of modules called extra-cluster-cost. Thebeau also introduced ClusterBid as a degree of

proximity between a component and a module. Lower values of intra-cluster-cost and extra-cluster-cost

171

 ICED17

equate to higher levels of integrity and independence. Intra-cluster-cost and extra-cluster-cost are shown

to be in conflict with each other (Sanaei et al., 2015). It is also shown that extra-cluster-cost has positive

dependence on the number of modules while intra-cluster-cost has dependence on variance of module

sizes (Sanai et al., 2016).

The IGTA algorithm (Idicula-Gutierrez-Thebeau Algorithm), cited as one of the most common

algorithms used for product modularization to date (Borjesson and Hölttä-Otto, 2012), is a stochastic

hill climbing algorithm built upon total-cost, the weighted sum of intra- and extra-cluster-cost.

Borjesson and Hölttä-Otto (Borjesson and Hölttä-Otto, 2012) improved the IGTA clustering algorithm

to obtain useful results faster, IGTA+, which provides the fastest published algorithm for clustering

DSMs. The IGTA+ clustering algorithm has been integrated with module drivers from MFD (Borjesson

and Hölttä-Otto, 2014) to consider strategic similarities between components. In previous work (Sanaei

et al., 2015) we framed IGTA+ to perform multi-objective optimization and Pareto Frontier generation

by optimizing a weighted summation of multiple objectives using IGTA+. In this paper, we introduce a

new algorithm that out-performs IGTA+ computationally in generating a Pareto-optimal surface of

solutions by several orders of magnitude. Further, to benefit from multi-cores available on most

computing systems, we adapt the algorithm to run in parallel on multi-CPUs.

3 ALGORITHM: DESIGN PRINCIPLES AND PSEUDO-CODE

Given the large search space, DSM optimizations typically make use of heuristic optimization methods.

The common sequence in heuristic optimization algorithms is outlined in (Osman and Kelly, 1996). A

series of solutions are generated and their quality is assessed according to objective functions. Iteratively

new solutions are generated through combination and modification and filtered before proceeding to a

next iteration. The space of solutions is generally astronomically large. One common strategy is finding

ways to generate solutions more likely close to optimal. What puts a solution in close-to-optimal region

varies problem by problem and there is no general-purpose optimization approach (Wolpert and

Macready, 1997).

Our algorithm consists of three distinct stages. First, we find all possible breaks in connections that

thereby bisect the architecture into two halves. We refer to these as cuts. Architectures with more than

two modules then can be generated through combinations of these cuts. Second, we increase the

architectural space coverage by adding new cuts or exchanging and replacing cuts among

modularizations in an evolutionary approach. Third, we explore the neighbourhoods of obtained

architectures by moving components between modules to further refine the search.

There are two novel factors in this approach that contribute to computational efficiency for Pareto

frontier identification. First, generating modularizations by overlapping of bi-sectioning cuts is more

efficient than random generation. Second, optimizing space coverage rather than metric minimization

is more efficient at generating the Pareto Frontier. In combination, we find these two factors increase

the speed of Pareto frontier generation by several orders of magnitude, from hours down to minutes for

typical problems of dozens of elements. In the following, we described each of these in more details.

3.1 Generating architectures

A common representation of modules in product architectures is the set of elements that each module

includes. Alternatively, modules can be identified through the set of links that module boundaries cut

through. These two different representations provide different methods to generate new architectures.

The first representation generates new architectures by moving components from one module to another.

The second representation generates new architectures by replacing and adding new cuts. The difference

between these two representations is schematically illustrated in Figure 1. The first approach is that

traditionally taken in DSM heuristic search such as IGTA. The second approach is novel, and explored

here.

Figure 1. Illustration representing modularity scheme by sets of components each module
contains, Figure 1.b Demonstration of modularity scheme by their interfaces.

172

ICED17

As illustrated in Figure 1, there are limited sets of cuts that can bisect an architecture into two halves.

For the function structure diagram shown in Figure 1 there are 43 distinct cuts that can bisect the diagram

into two parts. To find these cuts, we first find the individual edges that when removing them would

bisect the graph. For the rest of the edges, we remove a second edge, and repeat until finding all possible

edges that, when removed, bisect the graph. To then cluster the diagram into more than two halves,

modules can be generated by overlapping multiple bisecting cuts, as illustrated in Figure 2. Since the

number of cuts is smaller than number of modules and number of links within the set of cuts is the

number of links crossed by the module interfaces, we can bound the number of modules and links that

cut interfaces. This prevent exploration of costly architectures that have large numbers of extra-cluster

links. Therefore, generating modules by combining bi-sectioning cuts allows us to avoid generating a

considerable number of undesirable architectures.

Figure 2. Boundaries between modules can be always inscribed as an overlap of a
boundary between two modules.

3.2 Space Coverage

Another principle behind lowering computational cost is a population based approach. In contrast with

the common multi-objective optimization (Deb et al., 2002), we do not set the objective of our algorithm

to probe for non-dominated Pareto-optimal solutions. Rather, we set our objective to probe for coverage

of an ever-larger space of possible objective function values, as shown Figure 3. Using this population

based approach, solutions that were not found useful in improving one objective might turn out to be

helpful in improving the other objective. The selection criteria in our algorithm is therefore not geared

toward increasing optimality of solutions but rather to enhance the diversity of values across the

objective space. In so doing, however, the Pareto-frontier will be naturally obtained as the lower

boundary of this diversity space. In the iterations, we keep solutions when they are sufficiently distinct

from the rest of the solutions.

To implement this selection criteria, the initial space of objective function values is gridded into a matrix

of subspaces and only one solution in each non-null cell of this matrix is maintained. When searching

for the Pareto frontier, this is advantageous to other approaches as we keep a large diversity of solutions.

This diversity leads to the outer limits of the objective function space and so Pareto optimal solutions

within a few rounds of combinations and mutation. This helps both computation time and the breadth

of Pareto frontier points.

Figure 3. Visual illustration of the Pareto-frontier and trade-off space.

With a gridded space and selections made within, we then apply the second heuristic to probe the space

further. We take each solution produced in exploration grid and evaluate all possible architectures that

can be generated though moving one component from one module onto a neighbour. From this set, we

keep only one solution to carry forward in each grid cell. In this second phase of each iteration, the grid

173

 ICED17

is refined into smaller cells. The exploration and refinement process are repeated until the number of

filled cells in their corresponding matrix of subspaces settles into a constant, indicating the objective

function space has been adequately explored to its entire outer boundary. The outer boundary thereby

includes the Pareto frontier. Having sufficiently explored the entire space we collect the minimum value

of one objective for each value of other objectives to depict the Pareto-frontier.

3.3 DSM Pareto Optimization Algorithm

The overall structure of our algorithm is as below. The algorithm includes three parameters, c1, c2 and

n_terminate. These can be tuned according to the type of the DSM, similar to algorithm parameters in

IGTA+ or other heuristic search algorithms.

Algorithm 1: Pseudo-code of the algorithm (without parallelization)

We also adapted our algorithm for parallel computing; to do so, the population of solutions in the grid

spacing were distributed among several threads, each with separate grid matrices. Once all threads

complete, results are unified into a one grid matrix. These results are the re-distributed again amongst

running threads. With common multi-core processor computing systems, this parallelized approach can

lead to reduction in computation time proportional to the number of cores.

A second issue is to define modularity metrics. While MFD Modularity drivers are suitable as informal

objectives, they must be quantified as objective variables for clustering. We do this by associating a

numerical score to each module driver. To do this, for components with similar values placed into a

module we increment a score proportional to the strength of the modularity driver. For each incompatible

pair of components placed within a module we similarly discount the score. The score in Equation (1)

can be formulated as

Score𝑘 = ∑ ∑ 𝑆(𝑖, 𝑗) 𝐶(𝑖, 𝑗)𝑛
𝑗=1

𝑛
𝑖=1 (1)

where S is the element wise score matrix that contains scores associated with collocation of each pair of

components in the same module, and C is the elementwise cluster matrix where each of its entries denote

whether or not a pair of elements are located in the same module. Here, Score matrix in Equation (2)

can be written as

Score𝑘 = 𝑆(𝑀𝐼𝑀(𝑖, 𝑘), 𝑀𝐼𝑀(𝑗, 𝑘)) (2)

174

ICED17

where 𝑀𝐼𝑀(𝑖, 𝑘) denotes strength of modularity driver k associated with component i. This function

assigns a higher score value when the modularity driver strength of functions is higher and zero when a

modernity driver is not corresponded to one of the functions. We define it simply in Equation (3) as:

𝑆(𝑥, 𝑦) = {
𝑥 𝑦 if 𝑥, 𝑦 > 0

0 if (𝑥 < 0) or (𝑦 < 0)
 (3)

4 CASE STUDY

To demonstrate the efficacy of the proposed algorithm, consider a practical example of a Black and

Decker Dust-buster model CHV1210, a cordless handheld vacuum cleaner from (Borjesson and Hölttä-

Otto, 2012). The system consists of 57 components and 89 interactions. The DSM and MIM matrices

can be found in (Borjesson and Hölttä-Otto, 2012). Values for strategic parameters are shown in

Table 1. Numerical values of the MIM matrix entries are defined based on MIM table values as shown

in Table 2.

Table 1. Values for Algorithm Parameters

C1 0.5

C2 0.5

N_terminate 5

Table 2. MIM value quantification

Strong 1.0

Medium 0.6

Weak 0.3

None -1.0

Grid intervals for exploration were set to 1 and 10 for the refined second phase of each iteration. For

the IGTA+ algorithm, we set pow_cc = 1, and pow_bid = -2 per (Borjesson and Hölttä-Otto, 2012). The

results of the search space and Pareto Frontier generated are shown in Figure 4 for both IGTA+ and our

new algorithm. The new algorithm consistently generated a more accurate representation of the Pareto

Frontier. Beyond improved Pareto Frontier generation, computational complexity remains an issue

with DSM search algorithms. IGTA+ took 192 hours on a computer with two Intel(r) Xeon(r) (e5-2620

v3 @ 2.40ghz) CPUs each with six physical cores (2 logical cores per physical) with 64 GB RAM to

execute to generate the Pareto-frontier results shown, while our algorithm took only 24 minutes. While

a multitude of different metrics can be generated as Pareto plots, the MFD drivers are shown against the

‘total-cost’ modularity metric in Figure 4. The ‘total-cost’ has been found in previous research by many

to be a useful measure of complexity. As shown in Figure 4, the MFD modularity drivers are in trade-

off with the total-cost metric (lower left is better). These trade-offs are stronger for the MFD metrics of

styling, common unit, technical specification and planned development. Red region architecture depicts

the space explored by IGTA+, blue region is explored true our algorithm, as visible our algorithm is

capable of finding better non-dominated optimal architecture compared to IGTA+, in other words our

algorithm is able to produce solutions are that for both objectives are higher scored compared to IGTA+.

A designer can see these particular trade-offs. An initial choice can be made, and then a designer can

compare the different architectures in the neighbourhood along these particular Pareto frontiers. This

will allow for a more informed decision on the trade-offs and rate of change of the strategic metric

concerns with changes to the selected architecture. Such Pareto optimal architecture selection processes

have been discussed elsewhere (Guo and Gershenson, 2003; Sanaei et al., 2015; Yu et al., 2007). We

offer here means to efficiently compute the space of alternatives.

Essentially two main factors contribute to lower computational cost of our algorithm. First, since

architectures with extra-cluster links beyond a particular threshold is undesirable, we increase the

efficiency of our algorithm by heuristically limiting the generation of architectures with large number

of extra-cluster links. The second factor considers the homogeneity of the population over the space of

possible architectures. Our approach heuristically explores larger number of evolution paths from

ordinary solutions to Pareto optimal solution.

175

 ICED17

Figure 4. Various modularity driver scores versus total cost obtained using IGTA+ (red) and
the new algorithm (blue). The new algorithm always produced a better Pareto Frontier.

5 CONCLUSION

In this work, we have developed design principles and implementation of a low computational-cost

algorithm for generating the Pareto-optimal surface for multi-objective product architecture

modularization. This is non-trivial search, with non-convex objective functions and large space of

solutions, requiring meta-heuristic search. Our approach includes two separate stages and associated

heuristics for exploration.

An observation is that representing architecture as overlap of bisecting cuts is an efficient representation

that helps architecture exploration by not generating high extra-cluster cost architectures. Furthermore,

for multi-objective optimization, a population-oriented selection criteria that encourages diversity

among individual solutions is faster at finding the outer envelope of solutions in the objective function

space than spanning a weighted metric minimization.

To evaluate the algorithm performance, a set of MFD-based modularity-driver scores were defined and

their trade space versus total cost were presented. The algorithm is shown to be more than two orders

of magnitude faster than the previous best IGTA+ algorithm and able to produce pareto-frontier with

considerable better accuracy than IGTA+, to be clear, this statement applies not to speed of optimizing

a modularity metric, but rather strictly to generation of the Pareto optimal surface. Future work includes

stricter computational complexity analysis and demonstrating efficiency of algorithm across multiple

case studies.

REFERENCES

Van Beek, T.J., Erden, M.S. and Tomiyama, T. (2010), “Modular design of mechatronic systems with function

modeling”, Mechatronics, Vol. 20 No. 8, pp. 850–863.

Blackenfelt, M. (2001), “Managing complexity by product modularisation”.

Borjesson, F. and Hölttä-Otto, K. (2012), “Improved clustering algorithm for design structure matrix”, ASME

2012 International Design Engineering Technical Conferences and Computers and Information in

Engineering Conference, American Society of Mechanical Engineers, pp. 921–930.

Borjesson, F. and Hölttä-Otto, K. (2014), “A module generation algorithm for product architecture based on

component interactions and strategic drivers”, Research in Engineering Design, Vol. 25 No. 1, pp. 31–51.

176

ICED17

Dahmus, J.B., Gonzalez-Zugasti, J.P. and Otto, K.N. (2001), “Modular product architecture”, Design Studies,

Vol. 22 No. 5, pp. 409–424.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), “A fast and elitist multiobjective genetic algorithm:

NSGA-II”, IEEE Transactions on Evolutionary Computation, Vol. 6 No. 2, pp. 182–197.

Du, X., Jiao, J. and Tseng, M.M. (2001), “Architecture of product family: fundamentals and methodology”,

Concurrent Engineering, Vol. 9 No. 4, pp. 309–325.

Eppinger, S.D. and Browning, T.R. (2012), Design Structure Matrix Methods and Applications, MIT press.

Ericsson, A. and Erixon, G. (1999), Controlling Design Variants: Modular Product Platforms, Society of

Manufacturing Engineers.

Gershenson, J.K., Prasad, G.J. and Zhang, Y. (2003), “Product modularity: definitions and benefits”, Journal of

Engineering Design, Vol. 14 No. 3, pp. 295–313.

Gu, P. and Sosale, S. (1999), “Product modularization for life cycle engineering”, Robotics and Computer-

Integrated Manufacturing, Vol. 15 No. 5, pp. 387–401.

Guo, F. and Gershenson, J.K. (2003), “Comparison of modular measurement methods based on consistency

analysis and sensitivity analysis”, ASME 2003 International Design Engineering Technical Conferences

and Computers and Information in Engineering Conference, American Society of Mechanical Engineers,

pp. 393–401.

Gutierrez, C.I. (1998), Integration Analysis of Product Architecture to Support Effective Team Co-Location,

Massachusetts Institute of Technology.

Hölttä-Otto, K., Chiriac, N.A., Lysy, D. and Suk Suh, E. (2012), “Comparative analysis of coupling modularity

metrics”, Journal of Engineering Design, Vol. 23 No. 10–11, pp. 790–806.

Hölttä-Otto, K. and De Weck, O. (2007), “Degree of modularity in engineering systems and products with

technical and business constraints”, Concurrent Engineering, Vol. 15 No. 2, pp. 113–126.

Holtta, K.M. and Otto, K.N. (2003), “Incorporating design complexity measures in architectural assessment”,

ASME 2003 International Design Engineering Technical Conferences and Computers and Information in

Engineering Conference, American Society of Mechanical Engineers, pp. 525–532.

Hölttä, K.M. and Otto, K.N. (2005), “Incorporating design effort complexity measures in product architectural

design and assessment”, Design Studies, Vol. 26 No. 5, pp. 463–485.

Holtta, K.M. and Salonen, M.P. (2003), “Comparing three different modularity methods”, ASME 2003

International Design Engineering Technical Conferences and Computers and Information in Engineering

Conference, American Society of Mechanical Engineers, pp. 533–541.

Kimura, F., Kato, S., Hata, T. and Masuda, T. (2001), “Product modularization for parts reuse in inverse

manufacturing”, CIRP Annals-Manufacturing Technology, Vol. 50 No. 1, pp. 89–92.

McAdams, D.A., Stone, R.B. and Wood, K.L. (1999), “Functional interdependence and product similarity based

on customer needs”, Research in Engineering Design, Vol. 11 No. 1, pp. 1–19.

Osman, I.H. and Kelly, J.P. (1996), “Meta-heuristics: an overview”, Meta-Heuristics, Springer, pp. 1–21.

Otto, K. and Wood, K. (2001), Product Design: Techniques in Reverse Engineering, Systematic Design, and

New Product Development, Prentice Hall, New York.

Rechtin, E. (1991), Systems Architecting: Creating and Building Complex Systems, Vol. 199, Prentice Hall

Englewood Cliffs, NJ.

Rogers, G.G. and Bottaci, L. (1997), “Modular production systems: a new manufacturing paradigm”, Journal of

Intelligent Manufacturing, Vol. 8 No. 2, pp. 147–156.

Salonen, M., Holtta-Otto, K. and Otto, K. (2008), “Effecting product reliability and life cycle costs with early

design phase product architecture decisions”, International Journal of Product Development, Vol. 5 No. 1–

2, pp. 109–124.

Sanaei, R., Otto, K., Hölttä-Otto, K. and Luo, J. (2015), “Trade-Off Analysis of System Architecture Modularity

Using Design Structure Matrix”, ASME 2015 International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference, American Society of Mechanical Engineers, p.

V02BT03A037-V02BT03A037.

Sanai, R., Otto, K., Wood, K. and Hölltä-Otto, K. (2016), “Trade-offs Among System Architecture Modularity

Criteria”.

Sanchez, R. and Mahoney, J.T. (1996), “Modularity, flexibility, and knowledge management in product and

organization design”, Strategic Management Journal, Vol. 17 No. S2, pp. 63–76.

Sharman, D.M. and Yassine, A.A. (2007), “Architectural valuation using the design structure matrix and real

options theory”, Concurrent Engineering, Vol. 15 No. 2, pp. 157–173.

Sosa, M.E., Eppinger, S.D. and Rowles, C.M. (2003), “Identifying modular and integrative systems and their

impact on design team interactions”, Journal of Mechanical Design, Vol. 125 No. 2, pp. 240–252.

Stone, R.B. and Wood, K.L. (2000), “Development of a functional basis for design”, Journal of Mechanical

Design, Vol. 122 No. 4, pp. 359–370.

Stone, R.B., Wood, K.L. and Crawford, R.H. (1998), “A heuristic method to identify modules from a functional

description of a product”, Proceedings of DETC98, pp. 1–11.

177

 ICED17

Stone, R.B., Wood, K.L. and Crawford, R.H. (2000), “Using quantitative functional models to develop product

architectures”, Design Studies, Vol. 21 No. 3, pp. 239–260.

Thebeau, R.E. (2001), Knowledge Management of System Interfaces and Interactions from Product

Development Processes, Massachusetts Institute of Technology.

Ulrich, K. (1994), “Fundamentals of product modularity”, Management of Design, Springer, pp. 219–231.

Van Wie, M.J., Greer, J.L., Campbell, M.I., Stone, R.B. and Wood, K.L. (2001), “Interfaces and product

architecture”, ASME Design Engineering Technical Conference Proceedings, DETC01/DTM, Vol. 21689.

Wolpert, D.H. and Macready, W.G. (1997), “No free lunch theorems for optimization”, IEEE Transactions on

Evolutionary Computation, Vol. 1 No. 1, pp. 67–82.

Yu, T.-L., Yassine, A.A. and Goldberg, D.E. (2003), “A genetic algorithm for developing modular product

architectures”, ASME 2003 International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, American Society of Mechanical Engineers, pp. 515–524.

Yu, T.-L., Yassine, A.A. and Goldberg, D.E. (2007), “An information theoretic method for developing modular

architectures using genetic algorithms”, Research in Engineering Design, Vol. 18 No. 2, pp. 91–109.

Zamirowski, E.J. and Otto, K.N. (1999), “Identifying product portfolio architecture modularity using function

and variety heuristics”, Proceedings of the 11th International Conference on Design Theory and

Methodology ASME Design Engineering Technical Conferences, Las Vegas, NV, Paper No.

DETC99/DTM-8790.

ACKNOWLEDGEMENT

The authors would like to thank the SUTD-MIT International Design Centre (IDC, idc.sutd.edu.sg) for

financial and intellectual support. Any opinions, findings, or recommendations are those of the authors

and do not necessarily reflect the views of the IDC.

178

	DS87_4_164

