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Abstract 

The multi-disciplinary nature of Mechatronic Systems (MeSy) results in a highly complex design task, 

and it is believed that using an integrated approach to design would help reduce this complexity. 

However, integrated design is hard to implement due to the existing interactions between the 

components of MeSy. Some of these interactions are referred to as dependencies, and can affect the 

performance of MeSy while increasing the design task complexity. It is thus necessary to deal with them 

as early as possible. Although there are some methods to model dependencies, no methods exist to deal 

specifically with negative effect dependencies. Therefore, we propose a method that enables the 

identification and assess negative dependencies that exist within a mechatronic system. We first define 

negative dependencies between two components through four dimensions (affecting level, affected 

level, effect attenuation and functional closeness) and then assess these dimensions using fuzzy 

linguistic variables. We then demonstrate the effectiveness of the method by using a quadcopter drone 

as a case study which shows that it is possible to gain knowledge regarding potential design problems 

early on. 

 

Keywords: Mechatronics, Case study, Integrated product development, Fuzzy logic, Decision making 

 

Contact: 

Prof. Sofiane Achiche 

École Polytechnique de Montréal 

Mechanical Engineering 

Canada 

sofiane.achiche@polymtl.ca 

 

21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED17 
21-25 AUGUST 2017, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA 
 

 

 

Please cite this paper as:  

 Surnames, Initials: Title of paper. In: Proceedings of the 21st International Conference on Engineering Design (ICED17), 

Vol. 4: Design Methods and Tools, Vancouver, Canada, 21.-25.08.2017. 

31



  ICED17 

1 INTRODUCTION 

Mechatronic systems are the result of integration of mechanical components, electronics and software, 

all aided by control algorithms. These systems are involved in many different industrial domains, 

notably in robotics and in the automotive and aerospace industries. Since mechatronic systems involve 

multiple aspects of engineering domains, it is of utmost importance to design the system concurrently 

while considering all of these interlacing aspects in order to achieve a near optimal product (Rzevski, 

2003), hence avoiding the trap of having domain specific optimal subsystems that do not form an optimal 

whole when put together due to negative dependencies (Torry-Smith et al., 2012). This concurrent and 

collaborative approach have to be preferred over the traditional sequential design method (Rzevski, 

2003). However, this approach is shown to be challenging to implement, especially due to the high 

number of dependencies between the system components (Mohebbi et al., 2014). 

It is worth noting that a dependency is generally defined as the relationship that exists between two 

components when one affects the other. The affecting component is usually referred as the antecedent 

while the affected one is the dependent. By being able to identify, as early as possible, the various 

dependencies involved in a system design, it is possible to either avoid them, or mitigate their effects. 

Torry-Smith et al. (2014) proposes a classification method to help identify product related dependencies, 

which are dependencies that would exist between functions, means and properties. More specifically, 

Torry-Smith et al. (2014) identifies 13 different types of product related dependencies and provides a 

description for each of these dependencies along some methods to model them. One of the main 

identified dependencies are the adverse effect of means, which can be related to functions such as release 

heat or induce vibrations, and can be detrimental to the performance of the mechatronic device. 

However, those dependencies are difficult to identify as there exists a very limited set of tools, if not at 

all, that could be used for dealing with them at early design stages. Indeed, it is reported that undesired 

interaction between subsystems are usually unforeseeable and are found after building physical 

prototypes (D’Amelio and Tomiyama, 2007).  

The late detection of negative adverse effects in the design stages can result in costly redesign loops of 

certain components, or even the entire system in some cases, which in turns lengthens the design process. 

This could cause increased costs and potential loss of technological edge in fast developing fields where 

short time-to-market is crucial. Some methods do exist to try to identify negative interactions in a 

qualitative way such as the Design Interference Detector (DID) methodology (D’Amelio et al., 2011; 

D’Amelio and Tomiyama, 2007), which consists of using qualitative physics to identify interactions. 

However DID requires a vast knowledge base in order to be used, especially in terms of knowledge 

about previous failures and features which might render the process computationally heavy. Although 

some qualitative methods exist, there is no method to assess adverse effects in a quantitative manner.  

By being able to identify and quantify negative dependencies in a system, design engineers will have 

the opportunity to detect problems early on as well as assess their severity. Doing so would enable them 

to make better, more advised decisions as if there is a need to change or alter the concept, or a 

component, or if the various adverse effects can simply be overlooked.  

In order to compensate for the lack of an efficient qualitative method for assessing dependencies, we 

propose to use linguistic fuzzy variables to describe negative effects in a mechatronic system. The use 

of linguistic variables will enable us to quantify the level of negative dependencies between the 

antecedent and the dependent and therefore support the design decision making process. 

This paper proposes a method that allows for both modelling and assessing the adverse effects that could 

be present in a mechatronic system. We first present the main existing methods to deal with 

dependencies that have been traditionally used or recently introduced. We then present a new method 

to model and assess adverse effects in mechatronic systems. Finally, we demonstrate the use of our 

proposed method with a case study on a quadcopter drone design.  

2 DEPENDENCY MODELLING  

Dependencies are intrinsic to any system design, in particular mechatronic multi-domain systems, and 

can be related to many factors. It is important to state that in this paper we only deal with product related 

dependencies (Torry-Smith et al., 2014) and they will be referred to as simply dependencies. As 

mentioned previously, dependencies can exist between functions, means, and properties of mechatronic 

system. For instance, a dependency could exist between a function such as to provide power and the 
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mean which would be the power source, such as a battery or a power pack. Furthermore, there could 

also be dependencies between the mean, such as a battery type, and a property such as the energy density.  

These dependencies influence the final product and hence have to be considered as early as possible in 

the design process. However, unfortunately engineers tend to discover them late in integration meetings 

or even miss them all together (Torry-Smith et al., 2014, 2015). To better understand and deal with the 

potential challenges that could be encountered, engineers will usually need to rely on dependency 

modelling tools.  

Dependency modelling is a useful tool for design engineers since it allows them to understand the 

various relationships that exist between the different components of a system. Furthermore, it also 

enables them to detect future problems which could be related to negative effects of one component on 

another. Moreover, being able to model the dependencies can lead to being able to better manage them 

later on. Finally, a good modelling of dependencies can help understand the effect of design change 

propagation of one component on the other components of the system. Although there are different 

modelling tools that exist in order to carry out dependency modelling, one of the most widely used 

remains the Design Structure Matrix (DSM) (Browning, 2001; Steward, 1981).  

DSM expresses the interactions/relationships of the various components of a system using a square 

matrix of dimension n ; n  being the number of components in the system. In order to express the 

relationship that exists between the antecedent i  and the dependent j  , a marker is inserted in the matrix 

at the location row = i  , column = j . An example of a DSM is shown in Figure. 1(a). The DSM usually 

expresses components within a single engineering domain and thus can be extended to the Domain 

Mapping Matrix (DMM) which instead of having components from a single domain, the components 

are from two domains (e.g. mechanical and electrical) present in the system. Finally, using the DSM and 

DMM together it is possible to form a Multi-Domain Matrix (MDM) which enables us to get an 

overview of all the component/domain interactions of the mechatronic system and thus better manage 

the integration exercise during the design process. 

 
(a) 

 
(b) 

Figure. 1. (a) Design Structure Matrix (b) Multi-Domain Matrix 

DSMs are easy to use as they are a rather compact representation of information and can be 

accomplished on simple spreadsheet. However, their use is heavy on design time as they require a lot of 

involvement of the designer, or more often a team of engineering designers, as building the DSM would 

require the design team to go over all the possible relationships that could potentially exist between any 

pair of components. In order to reduce the required work during the dependency modelling, the research 

presented by Haddad (2015) proposes a framework that could be used in order to better identify the 

dependencies at early stages of design, it uses the notion of adverse effect of a function such as heat, 

vibration, or electric field. More specifically, it achieves this by identifying which functions generate an 

adverse effect (called the affecter) and which ones are affected by this effect (called the affected), it is 

therefore possible to create a dependency mapping through the use of if-then rule as follows: 

If function 1 generates adverse effect A and function 2 is affected by adverse effect A then a 

dependency between function 1 and function 2 is created. 

Using this approach, it is possible to only state which functions affect or are affected and the resulting 

set of rules generate automatically the dependencies. This greatly reduces the number of inputs required 

to find negative dependencies between system components. However, the method does not allow one to 

quantify the level of dependency (extent to which components are dependent to one-another) that exists 

within the mechatronic system. 

Apart from the DSM and DSM-based methods, there is only a scarce amount, if not at all, of tools that 

can effectively be used to try to assess or quantify dependencies. Indeed, the assessment measures 

introduced in DSM are mainly based on designers own decision and expertise level. One method to help 
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engineers to quantify the level of interaction between the components is proposed by Pimmler and 

Eppinger (1994) which consists of a 5 level scale representing if an interaction (spatial, energy, 

information, material) is detrimental, undesired, indifferent, beneficial or required. This scale combined 

with DSM provides a mean for clustering the components. However, this method again still requires a 

large number of inputs from the designers in order to rate the various interactions.  

Although dependency modelling and assessment is essential to streamline the development of high-

performance mechatronic devices, current methods are inefficient as too much emphasis relies on the 

experience of the engineers and error-prone human decision making. Furthermore, most of the existing 

methods require a high level of precise knowledge of the system to be designed which is often not even 

available at early design stages. Therefore, to deal with this imprecision we propose to exploit fuzzy-

logic based fuzzy numbers. Fuzzy numbers will allow the possibility to capture the uncertainty in the 

assessments of the designers. More precisely, the fuzzy numbers will be represented by fuzzy linguistic 

variables that can better represent human thinking process (Chen and Ku, 2008) and thus could be used 

in dependency modelling and assessment.  

3 LINGUISTIC FUZZY VARIABLES 

Linguistic fuzzy variables have been widely used to quantify properties that are difficult to assess by 

using a linguistic scale of preference/performance. Indeed, these fuzzy numbers have been employed in 

Kansei engineering (Achiche and Ahmed-Kristensen, 2011; Chou, 2014) or to evaluate the 

appropriateness of alternatives (Chang and Chen, 1994). For more information, an extensive list of fuzzy 

linguistic scales and their use is provided by Chen and Ku (2008). Fuzzy linguistic variables are usually 

more intuitive to employ than single fuzzy numbers. Indeed, describing a phenomenon with words is 

closer to human reasoning than it is with using a single number. 

Furthermore, by considering standard triangular/trapezoidal fuzzy membership functions, each 

components of the linguistic scale is associated to a triangular fuzzy number (TFN) or a trapezoidal 

fuzzy number (TrFN). This allows us to capture the uncertainty associated with the linguistic statement. 

Indeed, a TrFN has the form , , ,a b c d   where , , ,a b c d   are the vertices of the trapezoidal number 

with a  being the left bound and d   being the right bound. In the case of a TFN defined as , ,a b c   , 

,a c   will be the left and right bounds respectively. The uncertainty is captured by the bounds around 

the central values. An example of a linguistic scale is presented in Table 1 with their respective graphical 

representation in Figure. 2. 

Table 1. 5 Level linguistic scales with TFN and TrFN values 

Linguistic 

value 

Very low Low Medium High Very high 

TFN value 0, 0, 0.25   0, 0.25, 0.5  0.25, 0.5, 0.75  0.5, 0.75,1   0.75,1,1  

TrFN value 0, 0, 0.2, 0.3  0.2, 0.3, 0.4, 0.5   0.4, 0.5, 0.6, 0.7  0.6, 0.7, 0.8, 0.9  0.8, 0.9,1,1  

 

 
(a) 

 
(b) 

Figure. 2. Graphical Representation of the 5 level scale for (a) TFN and (b) TrFN 

Since linguistic fuzzy variable are represented by triangular/trapezoidal fuzzy membership function 

(numbers) they have various mathematical properties, with the most useful one in decision making being 

aggregation. One of the mainly used aggregation methods remains the arithmetic mean (AM) which is 
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defined, as a general case, for 𝑛 trapezoidal fuzzy number 1 1 1 1, , , ,..., , , ,n n n na b c d a b c d  by Equation 

(1) (Klir and Folger, 1988). 

 1 1 1 1

1 1 1 1

, , , , , , ,..., , , ,

1 1 1 1
with  ,  b ,  c ,  d

n n n n

n n n n

i i i i

a b c d AM a b c d a b c d

a a b c d
n n n n



      
  (1) 

Although triangular/trapezoidal fuzzy numbers are used with linguistic variables, they are not intuitively 

comparable once aggregated and it is usually impossible to associate them with a linguistic term. 

However, it is possible to obtain a single value from these numbers though a defuzzification process. A 

method for defuzzification of TFN/TrFN results in finding the centroid of the resulting shape comprised 

between the lower and upper bounds. As a general case, for a trapezoidal fuzzy number, the centroid is 

given by Equation (2) (Allahviranloo and Saneifard, 2012). 

1
( ) [ ]

3 ( ) ( )

dc ab
x A a b c d

d c a b


    

  
  (2) 

By using linguistic variables, it is possible to facilitate the description of the dependencies present in a 

system. The method to do so is presented in the next section.  

4 ADVERSE EFFECT DEPENDENCIES 

4.1 Dimensions of Dependencies 

As mentioned earlier, negative dependencies are detrimental to the performance of the system. These 

negative dependencies would usually be related to the adverse effect that a component might generate. 

Typically, the adverse effects that are considered are the Heat, Vibration, and Electromagnetic Fields 

(EMF) as they are physical effects that can be detected. We define a negative dependency as a function 

of 4 main properties:  

1. Affecter Level (AR): the extent to which a component affects (or generates an adverse effect),  

2. Affected Level (AD):  the extent to which a component is affected,  

3. Functional Closeness (FC): the extent to which two components have to be physically close in 

order to function properly (or the extent to which two components are to one-another) and,  

4. Effect Attenuation (EA): the extent to which the adverse effect attenuates over the increase of 

distance.  

It is worth noting that the engineers/designers need to identify these four parameters as early as possible 

in the design process. A way of achieving this would be through the use of the early system level 

representation of the concept. For instance, if it is required to assess the dependency related to heat 

between a battery and a motor, then it is known that a battery generates heat. However, motors are not 

necessarily required to be close to the power source in order to function properly and are only lowly 

affected by heat. Finally, heat effect level is known to reduce as distance increases.  

For each of the previously mentioned dimensions, we can then associate a linguistic fuzzy variable to it. 

A formal description of each of the dimensions with a linguistic scale is given in Table 2. 

Table 2. Proposed linguistic scale for describing the dimensions of a dependency 

Affecter level (AR) Extent to which affecter generates adverse effect 

Affected level (AD) Extent to which affected is affected by adverse effect 

Functional Closeness (FC) Extent to which components have to be close 

Effect Attenuation (EA) Extent to which adverse effect attenuates over distance 

Linguistic variable   Very low  Low Medium High Very high 

TFN 0, 0.1, 0.25  0.15, 0.3, 0.45  0.35, 0.5, 0.65  0.55, 0.7, 0.85  0.75, 0.9,1  

4.2  Assessing Dependencies Between Two Components 

In order to form a single fuzzy number that represent a certain adverse effect relation between two 

components in a system, it is required to combine the various dimensions. The first step is to create a 
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distance factor 
D

f    related to the functional closeness and the effect attenuation. To do so, we take the 

max of FC and of the complement of EA which is defined by Equation (3). 

max( , )Df FC EA   (3) 

Where the complement of a fuzzy number ( )u x   is defined by Equation (4).   

( ) 1 ( )u x u x    (4) 

The hypothesis behind this first operation is that the further a component is from a highly attenuating 

source, the least it would be affected. Moreover, even if a component is located far from a lowly 

attenuating source, the felt effect would be high. This can be transcribed by taking the complement of 

EA. Once the distance factor is computed, it can be combined with the affecting and affecter level of 

the dependency through the arithmetic mean (AM) defined in Equation (5). Thus, the dependency of 

adverse effect k   between component i   and j   , namely 
,k ij

d   , can be calculated by Equation (5). 

,
,

(AR ,AD , )
k ji

k ij i j D
d AM f   (5) 

Finally, the last step in the dependency assessment process is to combine the various adverse effects in 

order to get a single value representing the total dependency from a component to another. It is proposed 

to add the defuzzified values (Equation (2)) of each adverse effect between two components in order to 

obtain a single value representing the total level of negative dependency between any two components. 

We propose to describe FC as being low or very low by default and only specify otherwise if they do 

have FC or for instance if the components are part of a bundle (such as in avionics) or that there is a 

compactness requirement for the system. By assuming a default value, it greatly reduces the number of 

inputs required in order to carry out the dependency assessment. Furthermore, we propose to describe 

EA for the three main adverse effects as it is given in Table 3. This assessment is based on the fact that 

vibration might propagate through the structure of the system. Furthermore, although both heat and EMF 

reduces following 
2

1 / r   with r   being the distance from the source, heat might be conducted by metal 

components but EMF could create a Faraday’s cage with the structure and thus be isolated.  

Table 3. Proposed Effect Attenuation Assessment 

Effect Linguistic Variable 

Vibration Low 

Heat Medium 

EMF High 

 

4.3 Dependency Assessment Example 

A simple example of the use of the method with four components {C1, C2, C3, C4} and two adverse 

effects {Heat, Vibration} is shown below. We also set that the default value for functional closeness is 

low. Furthermore, there is a possibility that a component affects itself (such as a computer that generates 

heat, but its functioning is impaired by heat) and hence we set the functional closeness of a component 

on itself to very high in this case. 
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Table 4. Example of Describing Components of a System 

Component Affecting Affected 

C1 
Vibration - High 

Heat - Medium 
Heat - Low 

C2 Heat – Low Vibration - Medium 

C3 - 
Heat -Medium 

Vibration-High 

C4 Vibration – Very High Vibration - Very Low 

Using the information provided in Table 3 and Table 4, it is possible to use a simple coded script to 

search for combinations of type Affecting-Affected and use Equation (5) to compute the dependencies 

between the components. Doing so results in finding the DSM (with defuzzified values) of the various 

adverse effect as shown in Figure.3(a)-(b) and by combining them to find the overall DSM such as in 

Figure. 3(c).  

(a) (b) (c) 

Figure. 3. (a-c) DSM for heat, vibration, and combined 

By employing the proposed method for assessing the dependency, it is possible to quickly detect 

potential problems in the system. For instance, a large dependency as there is between C1 and C3 might 

lead to a decision to redesign these components, or focus the effort on mitigating the effects. In 

comparison, the dependency between C2 and C1 should require less effort to deal with, or it might even 

be decided that it could be overlooked. Furthermore, it can be seen that the proposed method effectively 

reduces the number of inputs required in the dependency assessment. Indeed, for a system with n  

components, we are able to potentially reduce the order from  2
O n  to  O n  for a highly dependent

and complex system. This decreased number of inputs is related to the fact that it is only required to 

state whether a component is affected by, and/or affecting an adverse effect which would result in 

inputting up to 2 m n    variables with m   being the number of adverse effect considered (3 in this 

paper). Comparatively, when using the DSM to carry out the same dependency assessment, one would 

require to input all possible combinations of components affecting each other, thus resulting in 
2m n

potential combinations. In the previous example, only 9 inputs enabled us to identify all 16 relationships 

of each adverse effect. Whereas, if the traditional DSM method was used, it would have required to go 

over all 16 potential dependencies. Thus, it is easy to see that for a system with a large number of 

components, the required inputs to assess dependencies drops rapidly.  

5 CASE STUDY: DEPENDENCY ASSESSMENT OF A QUADROTOR DRONE 

We now demonstrate the proposed methodology with a real-world case study which is a radio-controlled 

camera drone. The design specifications require the control of the drone to be based on user input, 

however the drone should be able of autonomous hovering. These specifications require incorporating 

sensors to control the position, attitude and altitude of the drone which could be achieved using a GPS, 

inertia sensor and a sonar respectively.  

There exists a large amount of information available regarding the design of these drones. More 

specifically, De Silva et al. (2016) provides a description of the fundamental components and 

subsystems required for the proper functioning of a drone along the various effects that could affect the 

performance of these subsystems. We provide a summary of these fundamental components alongside 
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the adverse effects associated to them and a linguistic assessment in Table 5. Furthermore, a model of 

the drone is provided in Figure 4.  

 

Figure. 4. Simplified model of the components of a quadcopter drone 

Table 5. List of components and their related adverse effects 

Component ID Function Affecting Affected 

Actuator 

(motor + 

propeller) 

A Provide Motion 
Vibration - High 

EMF - Medium 
Vibration - Medium 

Motor Driver B Modulate Power 
Heat – Low 

EMF- Medium 

Heat - High 

EMF- High 

Gps C Position sensor EMF – Low 
Heat -Low 

EMF-High 

Gyro D Attitude sensor EMF- Low 

Vibration - Very High 

Heat - Low 

EMF - High 

Sonar E Altitude sensor EMF- Low 
Heat - Low 

EMF - High 

Computer F Process Info + Control 
Heat – Medium 

EMF – Low 

Heat – High 

EMF- Low 

Battery G Provide Power 
Heat - Very High 

EMF - Medium 
- 

RC Antenna H Communication - EMF - Medium 

Camera I Video Recording EMF- Low 
Vibration - Medium 

EMF - High 

 

Quadcopter drones are usually designed to be compact in order to reduce the inertia of the system and 

thus to capture this standard requirement we set the default FC appropriately. A detailed description of 

the functional closeness of the components in the system is provided in Table 6. 

Table 6. Functional Closeness (FC) of components 

Components Functional Closeness 

Default Medium 

Gps-Sonar-Gyro  Very High 

Actuator – All Others Very Low 

Camera – All Others Low 

 

Finally, by using our method as it was presented in section 4.2 and using Equation (5) with the 

information provided in Tables 3, 5 and 6, it is possible to obtain the DSM of the system for each of the 

adverse effect (Figure. 5 (a)-(c) ), as well as the overall DSM (Figure. 5 (d) ) . 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure. 5. DSM for (a) Heat, (b) Vibration, (c) EMF, (d) Combined 

By carrying out the dependency assessment method it is possible to identify the main adverse effects of 

the system which is the Electro-Magnetic Field. The result of the analysis is consistent with the 

information provided by De Silva et al. (2016) which states that it is usually one of the main concerns 

during the design of small scale UAV.  

By using the dependency assessment method on the quadcopter drone design, it is possible to see that 

dependency modelling can be made faster. Indeed, only 34 inputs were required to analyze all 300 

potential dependencies (3 adverse effects, 10 components resulting in 100 dependencies per adverse 

effects). Furthermore, it is possible to collect information that is in line with current knowledge of the 

subject. While, quadcopter drones are now a highly studied and commercialized system, so a wealth of 

information is already available online, our proposed method confirms that it could be used during the 

design of new systems where information is scarce. Thus the method could potentially detect and 

quantify the extent to which negative dependencies are present in the system in a much faster way than 

what would typically be required by multiple testing. Furthermore, it is also possible to see that the 

method effectively reduces the involvement of the designer as it relies less on knowledge of the system 

which would be obtained from experience, but more on general knowledge of components which can 

be obtained online, from books or catalogs, or the traditional integration meetings. 

6  CONCLUSION 

In this work, a new method for assessing and modelling negative dependencies in a system was 

proposed.  We proposed to define a dependency through four dimensions (Affecter Level, Affected 

Level, Functional Closeness and Effect Attenuation) and describe these dimensions using fuzzy 

linguistic variables. The proposed method effectively reduces the number of inputs required for 

identifying dependencies as well as enabling engineers to understand the extent to which to components 

in a system are dependent. We showed that it was possible to express current knowledge on widely a 

widely studied design case, and hence the method could be employed to identify dependencies with 

unknown systems. Doing so will greatly reduce the design process time and thus enable faster time-to-

market which will be beneficial in highly competitive fields. Furthermore by employing fuzzy linguistic 

variables, the knowledge required to make the assessment can be transferred to new designs as it would 

not be possible to have exact understanding of the effects of one component to another. Moreover, fuzzy 
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linguistic variables have the ability to capture the difference in perception between different designers 

and thus the final assessment might be similar even though intermediary assessments might not be.  

Even though we proposed a method that enables to detect and quantify negative dependencies early in 

the design process, there is still work that remains to be carried out in order to be able to identify all of 

the product related dependencies. Doing so will enable us to increase the quality and reliability of 

mechatronic devices while reducing their cost. Furthermore, there is a need to use the knowledge gained 

in dependency modelling and assessment during the decision making process during the conceptual 

stage as doing so will allow us to select concepts that would potentially require less efforts to mitigate 

these dependencies. 
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