

EFFICIENT APPLICATION OF OPTIMIZATION METHODS BY

USING CONCURRENT AND SIMULTANEOUS

OPTIMIZATION

Wünsch, Andreas; Vajna, Sandor

Otto-von-Guericke-University Magdeburg, Germany

Abstract

The present paper addresses the research question of the efficient execution of optimization tasks in

product development by using parallelization methods and by considering the existing resources within

an organization. Based on analogies between optimization processes and the execution of tasks in

interdisciplinary teams, a method for efficient parallelization of evaluation processes of optimizations

is introduced and implemented prototypically into a framework for distributed optimization. Thereby

the parallelization of evaluation processes is based on the decomposition of both the optimization model

and the evaluation model. Since the processing of these process elements depends only on the

availability and the stability of required information and resources, high flexibility in the application

and dynamic response to spontaneous changes in the resources can be ensured. Within this environment

resources include available hardware, installed software, and available licenses. Furthermore, we show

how the efficiency of an optimization can be further increased by using priority-based processing of the

process elements of the evaluation process.

Keywords: Concurrent Engineering (CE), Design informatics, Integrated product development,

Optimisation, Simulation

Contact:

Dr.-Ing. Andreas Wünsch

Otto-von-Guericke-University Magdeburg

Chair of Information Technologies in Mechanical Engineering

Germany

andreas.wuensch@ovgu.de

21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED17
21-25 AUGUST 2017, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA

Please cite this paper as:

 Surnames, Initials: Title of paper. In: Proceedings of the 21st International Conference on Engineering Design (ICED17),

Vol. 2: Design Processes | Design Organisation and Management, Vancouver, Canada, 21.-25.08.2017.

159

 ICED17

1 INTRODUCTION

Analysis and simulation enable engineers to evaluate new products without the need for physical

prototyping. The area of computer aided engineering has established itself as an important part of the

product development process. Based on virtual prototypes the relevant properties of a product can be

determined and optimized during early phases of the product development process. Especially when a

large number of requirements have to be considered and the requirements contradict each other

multiobjective and multidisciplinary optimization methods can be used to support the development

process and to reduce the number of physical prototypes which leads to cost and time savings.

However, these methods often require a lot of computational resources. Thereby the optimization

process has to be constantly efficient. Bottlenecks should be avoided and available resources should not

become idle unless the optimization is not finished.

The present paper addresses the research question of an efficient execution of optimization tasks in

product development by using parallelization methods and by considering the existing resources within

an organization.

The structure of this paper is as follows. Firstly, we present concurrent and simultaneous optimisation

as a parallelization method to solve the research question. Subsequently, we show how the efficiency of

an optimization can be further increased by using priority-based processing of the process elements of

the evaluation process. Furthermore, we present a framework for distributed optimization, which was

developed for the prototypical implementation of the parallelization method, and its validation based on

two case studies. This paper ends with some concluding remarks.

2 CONCURRENT AND SIMULTANEOUS OPTIMIZATION

Using parallelization is a common used method to increase the efficiency of solving a problem. Thereby

the problem is split into independent subproblems that are solved in parallel. The ability to solve a

certain problem in parallel depends strongly on the problem's structure. If the problem consists of

mutually independent partial problems, the problem can be decomposed into its subproblems and

processed independently. This is called inherent parallelism (Bengel et al., 2015).

Considering product optimization problems the involved evaluation processes have to be inherent

parallel at least in a certain domain, which is called parallelization domain. Due to the inherent

parallelism in this domain the evaluations can be processed in parallel. There are two kinds of model

decomposition that yield to inherent parallel evaluation processes (Schumacher, 2013):

• Decomposition of the optimization model: The optimization model is decomposed into

independent evaluations of independent variants of the product. Usually stochastic optimization

methods, e.g. Evolutionary and Genetic Algorithms, Particle Swarm, and Simulated Annealing use

independent variants of the optimized product. Considering Genetic Algorithms the population

represents the parallelization domain, where the included individuals are mutually independent.

Design of Experiment studies, which are used to create meta models that represent the product

behaviour, also contain independent samples of the product. These samples can be evaluated in

parallel, too (Cavazzuti, 2013).

Since only the optimization model is decomposed the evaluation model is not affected by this

decomposition and does not require any adaption.

• Decomposition of the evaluation model: The evaluation model is decomposed and processed in

parallel. The optimization itself can be processed sequentially. The decomposition of the evaluation

model can be done at different sites, e.g. to parallelize different load cases of a complex

multidisciplinary simulation using the All-at-Once approach (Martins and Lambe, 2013) or to

parallelize large finite element analyses such as crash simulation using domain decomposition.

Since only the evaluation model is decomposed, the optimization model is not affected by this

decomposition. Due to this fact any optimization method can be used even deterministic

optimization methods which use dependent variants of the product during the optimization, e.g.

search direction methods.

These decomposition methods represent the state of the art of decomposition and parallelization of

optimization methods. Both decomposition methods are also the underlying principles of several

160

http://www.dict.cc/englisch-deutsch/subsequently.html

ICED17

multidisciplinary optimization architectures, which were collected and summarized by Martins and

Lambe (2013).

Considering these decomposition methods the optimization can either be processed fully parallel while

the optimization model is decomposed or it is processed sequentially with load case parallelization while

only the evaluation model is decomposed. The major advantage of both methods is the relatively low

administrative effort. Thereby the most efficient way is to use the same number of computing resources

as the number of evaluation processes, which leads to high computational costs in hardware, software,

and available licenses since the number of number of evaluation process becomes high. The risk of both

methods is the possibility of bottlenecks in the evaluation process, especially when it consists of many

different load cases or simulations. The whole process has to wait for the slowest simulation and some

resources become idle (Wünsch et al., 2015).

However, in real world applications resources play a major role. This includes hardware, software and

licenses. In our opinion a flexible resource management system has to be considered in any

parallelization method while continuously avoiding idleness of available resources. Due to this fact, we

developed a dynamic parallelization method to ensure the efficient processing of an optimization while

dynamically reacting on changing resources. Thereby the efficiency and the parallelization of

optimization methods are characterized by three terms (Wünsch, 2017):

• Effectiveness: The effectiveness of an optimization describes the quality of the achieved Solution

or the determined optimum. High efficiency is achieved when the global optimum of an

optimization problem is determined or if there is a high probability of finding the global optimum.

• Resources: The resources include available hardware, software, and licenses. The smallest unit of

a considered hardware resource is called slot. This can represent a single CPU or a whole

workstation. Since in the studies of this paper a workstation cluster is used, in the subsequent

remarks of this paper a slot represents a workstation.

• Processing time: The processing time signifies the overall time for processing and optimization.

These terms characterize the efficiency of an optimization. It indicates how quickly the solution of the

optimization problem is achieved. Thereby the number of required evaluations and the possible degree

of parallelization with respect to the available resources are taken into account.

Similar to the triangle of stakeholder expectations in project management, which counteract the

dependencies of project objectives (Kuster et al., 2011); these terms represent the objectives of a product

optimization. If there is no fundamental change in the optimization strategy, e.g. by changing the

optimization method, none of these terms can be changed without affecting one of the other terms (see

Figure 1).

Figure 1. Relation of effectiveness, resources and processing time of an optimization using
dynamic parallelization (Wünsch, 2017)

If, for example, the effectiveness of an optimization should be increased because the global optimum

was not found, a larger number of evaluations is usually required, which increases the processing time

of the optimization using an equal number of resources. If more resources are spontaneously available

during the optimization, it is possible to increase the degree of parallelization and thus to reduce

processing time. The major goal in determining the terms should always be based on the effectiveness

of the optimization, which is required by the user and results in the parameters of the optimization, e.g.

the population size of a GA. By dynamically allocating the evaluation processes, the maximum available

Effectiveness

Processing

time

Required

Dynamic

allocation
Minimization

Resources

Influential

Influential

161

http://www.dict.cc/englisch-deutsch/remarks.html

 ICED17

resources should always be used with the aim of minimizing processing time and thus increasing the

efficiency of the optimization.

To realize this approach, we developed Concurrent Optimization (CO) and Simultaneous Optimization

(SO), which represents a very flexible and efficient method to parallel optimization processes (see

Figure 2). Since both optimization processes and product development processes can be seen as

continuous iterative improvement according to the TOTE scheme (Miller et al., 1960; Ehrlenspiel,

1995), this method is based on analogies between processing evaluation processes and working on tasks

in interdisciplinary product development teams using Concurrent Engineering (CE) and Simultaneous

Engineering (SE). Thereby both the optimization model and the evaluation model are decomposed

regarding to the required resources. Similar to CE and SE, CO and SO are only based on the availability

and stability of the required information and resources. Thus, a great flexibility in parallel processing of

the process elements and dynamically reaction to bottlenecks in the resources can be achieved.

Figure 2. Concurrent and Simultaneous Optimization (Wünsch, 2017)

In this method the slots of the distributed computing environment behave similarly to members of an

interdisciplinary development team who have different qualifications and thus can execute different

tasks. If a member of the team spontaneously drops out or a new one joins the team, the tasks are

redistributed by means of dynamic allocation, with the aim of processing the overall task as efficiently

as possible and minimizing the overall processing time. The decomposition of the evaluation model

should be done according to the required resources, e.g. according to the required software or hardware.

3 PRIORITY-BASED PROCESSING OF EVALUATION PROCESSES

Using the presented method of CO and SO to parallel optimization processes the efficiency of the

optimization decreases if resources become idle while other resources are busy. This happens if the

queue is non-homogeneous. The queue contains the process elements of the decomposed evaluations

process. To avoid idleness of available resources priority-based processing of these process elements

can be used while ensuring the advantages of dynamic allocation (by reacting dynamically to changing

resources).

Finding the optimal priority values of the single process elements represents a scheduling problem which

can be solved by different scheduling methods (Topcuoglu et al., 2002; Dong and Akl, 2006):

n1

n2

np

...

Parallelization Domain

Load Case1

Load Casei

Load Case1

Load Casei

Load Casei

Load Case1

...

...

...

Simultaneous
Optimization

Concurrent
Optimization

Generate
Model

Evaluate
Model

Evaluate
Model

Evaluate
Model

Evaluate
Model

Optimization

Generate
Model

Evaluate
Model

Generate
Model

Evaluate
Model

162

ICED17

• Complete enumeration: All possible combinations of the problem are evaluated. The optimal

solution of the problem is found by comparing all solutions. Due to the high computational effort,

complete enumeration is only suitable in practical use for small problems.

• Heuristics: Heuristics describe reliable solutions based on the underlying complex structure of a

problem. In contrast to optimization methods, the approximation solution is not determined

iteratively but directly. Commonly used scheduling heuristics are First In - First Out (FIFO) and

Longest Path Following (LPF). A summary of common heuristics can be found in Fündeling

(2006) and Thonemann and Albers (2010).

• Optimization methods: The problem is solved by an iterative optimization process. Since

scheduling problems have a combinatorial problem structure and are NP-complete different

optimization algorithms exist to solve different kinds of problems. Algorithms can be highly

specialised to particular scheduling problems or work more in a general way to solve various kinds

of scheduling problems. Thereby stochastic optimization can be used to solve different kinds of

problem while providing a high probability to find an optimal solution in an appropriate amount of

time, e.g. Genetic Algorithms, Particle Swarm or Simulated Annealing.

To investigate these methods regarding to the determination of the optimal priority values of the single

process elements we used different test scenarios which represent different evaluation processes. Two

of these test scenarios are shown in Figure 3. The structure of the evaluation process and the

dependencies of the single process elements are described as a directed acyclic graph (DAG). In this

All-at-Once approach every process element represents a multidisciplinary load case that results in a

state variable or a process that provides variables or model data to following processes. The last process

element (Z) represents the calculation of the objective function. This element is not considered for the

scheduling because this calculation is very fast and will be processed locally. In the DAG definition of

the evaluation process cycles are not considered.

Figure 3. Test scenarios for determining the method for generating the optimal priority
values of the process elements (Wünsch, 2017)

For investigating the scheduling methods we developed code that simulates the allocation process. This

allows determining the entire solution space by complete enumeration to assess the quality and

suitability of a method. The solution space contains all possible solutions. Furthermore, we used the

FIFO heuristic, which yield to priority values of 0,0,0 in test scenario 1 and the LPF heuristic, which

yield to values of 0,1,2. The priority values are in alphabetical order of the DAG in Figure 3.

Additionally an optimization method was used to determine the optimal priority values. Is this study 4

slots ware used (ns = 4).

The results in Figure 4 show that heuristics are not suitable to determine the optimal priority values

while varying the size of the parallelization domain. Only the optimized priority values result constantly

in the shortest processing time because the optimisation considers the conditions of the problem

individually instead of generally, e.g. the size of the parallelization domain.

tA = 30 s

tC = 60 stB = 50 s C

Z

A

B

tA = 30 s

tC = 20 stB = 60 s

tE = 60 stD = 30 s

Test scenario 1 Test scenario 2

A

C

Z

B

ED

163

https://www.dict.cc/englisch-deutsch/highly.html
https://www.dict.cc/englisch-deutsch/specialised.html

 ICED17

Figure 4. Comparison of real and simulated processing time for test scenario 1 (ns = 4)

The investigation of test scenario 2 yields to the same results (see Figure 5). The shortest processing

time can only achieved constantly by using optimization methods to determine the optimal priority

values.

Figure 5. Comparison of real and simulated processing time for test scenario 2 (ns = 4)

For the investigation of a suitable optimization algorithm we selected the most adverse condition of the

scheduling problem of test scenario 2. The size of the parallelization domain is set to np = 4; 15. With

these values, only 4.7 % of the possible combinations of the priority values lead to the minimum

processing time, which is the smallest percentage of the optimum priority values. We compared the

quality of the solution and the required number of iterations of the following stochastic algorithms of

the inpspyred framework (Inspired Intelligence Initiative, 2016):

• Nondominated Sorting Genetic Algorithm (NSGA-II).

• Simple Genetic Algorithm (GA).

• Genetic Algorithm that is fitted to the Traveling Salesman Problem (GA-TSP).

• Simulated Annealing (SA).

164

ICED17

To consider stochastic dispersion we performed 5 optimization runs with each algorithm. The results

show, that the NSGA-II algorithm, which represents a state of the art GA, yields constantly to the

optimal priority values and thus to the shortest processing time (see Figure 6).

Figure 6. Comparison of different optimization algorithms for optimizing the process priority
values of test scenario 2 (np = 4, ns = 4) (Wünsch, 2017)

The results were validated by a second study using a parallelisation domain of np = 15. In this study the

NSGA-II algorithm also shows the smallest dispersion and yields constantly to the optimal priority

values. Due to this fact this algorithm was selected for the prototypical implementation.

4 PROTOTYPICAL IMPLEMENTATION

For the prototypical implementation a framework was developed which realizes the described method

of CO and SO for the efficient and dynamic parallelization of evaluation processes of optimizations in

product development. The framework includes various functions and procedures for the efficient

execution of optimizations and DoE studies in a distributed computing environment. The framework

consists of 3 tiers: the front-end, the modules, and the resources. These tiers and the integrated systems

including their specific tasks and interactions are shown in Figure 7.

Figure 7. Tasks and interactions of the systems integrated into the framework
(Wünsch, 2017)

The front end of the framework is represented by the optimization system DAG2OPT. Except the

creation of the scripts for the automation of the process elements, all activities for preparing and

executing an optimization can be done by the user via a graphical user interface, which enables a very

easy setup of a distributed optimization.

The second tier contains the modules. The modules include the cluster management system HTCondor

(Center for High Throughput Computing, 2015), which controls the resource management and the job

scheduling. Furthermore the modules include the evaluation script and the optimization system NOA

00:03:30

00:03:40

00:03:50

00:04:00

00:04:10

00:04:20

00:04:30

180 200 220 240 260 280 300 320 340 360
Number of Iterations

NSGA-II

GA

GA-TSP

SA

Solution space

1x 3x

5x

P
ro

c
e

s
s
in

g
 t
im

e
 t

in
 h

h
:m

m
:s

s

DAG2OPT

Evaluation Script

HTCondor Cluster

Local Workstation

NOA

- Processing evaluation
processes

- Execution of evaluation
processes

- Provision of parallelization
methods

- Definition of evaluation
model (DAG)

- Definition of meta
information

- Optimization of priority
values

- Generation of the
evaluation script

- Provision of optimization
algorithms

- Execution of DoE studies

- Monitoring of the
optimization process

- Execution of the
optimization

HTCondor

- Cluster management

- Job scheduling

- Resource management

- Processing evaluation
processes

Modules ResourcesFront end

165

http://www.dict.cc/englisch-deutsch/dispersion.html

 ICED17

(Jordan and Clement, 2004). Based on meta information of the process elements, which are set up by

the user, the evaluation script contains the complete logic for the control of the evaluation processes and

for the dynamic parallelization of the process elements. Thus it can also be integrated into external

superordinate processes after its creation. NOA provides several EAs and GAs. It also starts the

evaluation script, interprets the result of the evaluations, the objective function value, and determines

the fitness value. NOA is controlled entirely by DAG2OPT. DAG2OPT also realizes the generation of

the evaluation script and the communication to the modules.

A workstation cluster is used to provide the computing resources, since this kind of cluster represents a

very cost efficient distributed computing environment. The advantages of workstation clusters are

described by Wünsch et al. (2015). Based on their meta information the process elements are either

transmitted to the HTCondor cluster or are executed on the local master workstation that also runs

DAG2OPT and the modules. This enables a very easy integration of software tools that require their

execution in GUI mode in an automated and distributed evaluation process. It also enables the

integration and efficient execution of process elements that have a very short processing time below the

overhead time (10 s). The overhead contains the extra amount of time for transferring data within the

cluster and synchronizing results. Usually in common optimization frameworks the distributed

processing of these kinds of elements is not efficient since the communication takes more time than the

execution.

5 CASE STUDIES

The developed framework was validated in two case studies which represent multidisciplinary

optimization tasks using the All-at-Once approach and address different properties of the framework.

For this a heterogeneous workstation cluster in a university computer lab was used. The cluster consists

of the following workstations:

• 24 x Dell T1600 (Windows 7 64-bit, CPU: Intel Xeon E3-1290 3.60 GHz, 16 GB RAM).

• 4 x Dell T5810 (Windows 7 64-bit, CPU: Intel Xeon E5-1620 v3 3.50 GHz, 8 GB RAM).

Similar clusters may be built up at most institutes and companies, where a large number of free standing

workstations is available at very little cost.

5.1 DoE Study of a Crank Arm

The focus of this case study is the flexible use of the optimization system and the dynamic allocation of

the available resources. The case study represents a DoE study of the crank arm. Thereby fully parallel

processing and simultaneous optimization are compared while the number of slots (workstations) is

varied (1  ns  16). Furthermore the processing time is compared to the ideal parallelization which is

the theoretical optimum. The evaluation process consists of 3 process elements (see Figure 8).

Figure 8. DAG representation of the evaluation process (Wünsch, 2017)

The results show that up to a slot number of ns = 7 simultaneous optimization leads to shorter processing

times (see Figure 9). This can be explained on the one hand with the additional resource of the master

workstation, which processes element A. On the other hand, the overhead is reduced since there is no

allocation of process element A in the cluster.

When the slot number becomes greater or equal ns = 8, the fully parallel processing leads to shorter

processing times because each process element of the parallelization domain is assigned its own resource

and thus all processing elements are processed in parallel (ns = np). By a further increase in the number

of slots, only a small reduction of the processing time can be achieved. The ideal processing times of

the two parallelization methods show similar behaviour.

Model generation and preprocessing
tA = 00:00:18

C

Z

A

B
Load case 2 (natural frequencies)
tC = 00:02:32

Load case 1 (linear static)
tB = 00:00:54

166

ICED17

Comparing the real processing times with the ideal processing times, which were calculated analytically

and represent the ideal theoretical parallelization, it can be seen that the curves are almost parallel. This

indicates that the framework is able to react dynamically on a changing number of resources in an ideal

way. The distance between the ideal and real curves is almost constant and results from the overhead. It

can be seen that this overhead is almost constant and independent of the slot number. Thus the provided

cluster is fully scalable.

Figure 9. Real and ideal processing time using different parallelization methods
(Wünsch, 2017)

5.2 Optimization of a Lever Mechanism

The second case study represents a multidisciplinary optimization of a lever mechanism and focuses on

the robustness of the framework. Since a university computer lab was used for this study the

workstations are frequently used for interactive work by students. The results show that the optimisation

runs very stably and robustly. Thereby the framework can autonomously compensate a fluctuating

number of resources (see Figure 10).

Figure 10. Evaluations of an optimization run separated by time ranges (Wünsch, 2017)

The optimization run contains 2828 evaluations in total. The overall processing time of this optimization

was 38 h 35 min (≙ 1.61 d). Compared to the sequential processing of these evaluations which lead to

overall processing time of 671 h 39 min (≙ 27.99 d) an overall speedup of Sp = 17.4 and an overall

efficiency of Ep = 0.7 could be achieved. Considering only the time range 16:00 – 20:00 on 20.07.2016

where the most evaluations where processed (334), a speedup of Sp = 20.9 with an efficiency of Ep =

0.84 could be obtained.

6 CONCLUSION

The present paper focuses the efficient execution of optimization processes in product development by

using dynamic parallelization considering available resources within an organisation. Based on

analogies between optimization processes and the execution of tasks in interdisciplinary teams, a method

00:00:00

00:05:00

00:10:00

00:15:00

00:20:00

00:25:00

00:30:00

00:35:00

00:40:00

00:45:00

0 2 4 6 8 10 12 14 16

P
ro

c
e

s
s
in

g
 t
im

e
 t

in
 h

h
:m

m
:s

s

Number of slots ns

Fully parallel, real

Simultaneous Opt., real

Fully parallel, ideal

Simultaneous Opt., ideal

Limit of Simultaneous Opt., ideal

120

160

200

240

280

320

360

0
0
:0

0
 -

 0
4
:0

0

0
4

:0
0

 -
 0

8
:0

0

0
8

:0
0

 -
 1

2
:0

0

1
2

:0
0

 -
 1

6
:0

0

1
6

:0
0

 -
 2

0
:0

0

2
0

:0
0

 -
 0

0
:0

0

0
0

:0
0

 -
 0

4
:0

0

0
4

:0
0

 -
 0

8
:0

0

0
8

:0
0

 -
 1

2
:0

0

1
2
:0

0
 -

 1
6
:0

0

1
6

:0
0

 -
 2

0
:0

0

2
0

:0
0

 -
 0

0
:0

0

0
0

:0
0

 -
 0

4
:0

0

0
4

:0
0

 -
 0

8
:0

0

0
8

:0
0

 -
 1

2
:0

0

1
2

:0
0

 -
 1

6
:0

0

1
6

:0
0

 -
 2

0
:0

0

2
0

:0
0

 -
 0

0
:0

0

E
v
a

lu
a

ti
o

n
s

Tuesday

19.07.2016

Wednesday

20.07.2016

Thursday

21.07.2016

167

http://www.dict.cc/englisch-deutsch/compensate.html

 ICED17

for efficient parallelization of evaluation processes of optimizations was presented using the terms of

concurrent and simultaneous optimization. The method is based on the decomposition of both the

optimization model and the evaluation model.

The efficiency of an optimization can be further increased by priority-based processing of the process

elements, since unnecessary idling of existing resources is thus avoided. Thereby, the optimal priority

values can by generated best by using the genetic algorithm NSGA-II.

The parallelization method was implemented prototypically into a framework for distributed

optimization which was validated in two case studies, which represent different typical multidisciplinary

optimization tasks using an All-at-Once approach. The case studies reflect an industrial environment

where free workstations can be available as resources in a cluster during breaks, at night, or at weekends.

The framework can be used in both homogeneous and heterogeneous workstation clusters, which can

be implemented very cost-efficiently from an arbitrary number of workstations connected by a network.

Additional hardware is not required. Since data is transferred directly between these workstations, there

is no need for a shared memory environment. Thereby overhead is almost constant and independent of

the number of workstations in the cluster. Thus the provided cluster is fully scalable while ensuring its

efficiency. Workstations of the cluster are available for interactive work at any time. Interactive work is

not affected by a running optimization.

REFERENCES

Bengel, G., Baun, C., Kunze, M. and Stucky, K.-U. (2015), Masterkurs Parallele und Verteilte Systeme:

Grundlagen und Programmierung von Multicoreprozessoren, Multiprozessoren, Cluster und Grid, 2nd ed.,

Springer, Wiesbaden. ISBN 978–3–83481–671–9

Cavazzuti, M. (2013), Optimization Methods: From Theory to Design: Scientific and Technological Aspects in

Mechanics, Springer, Berlin, New York. ISBN 978–3–64231–186–4

Center for High Throughput Computing (2015), HTCondor Version 8.4.3 Manual,University of Wisconsin-

Madison.

Dong, F. and Akl, S. G. (2006), Scheduling Algorithms for Grid Computing: State of the Art and Open

Problems, Technical Report No. 2006-504, Queen’s University, Kingston, Ontario.

Ehrlenspiel, K. (1995), Integrierte Produktentwicklung: Methoden für Prozeßorganisation, Produkterstellung

und Konstruktion, München, Hanser, Wien. ISBN 3–446–15706–9

Fündeling, C.-U. (2006), Ressourcenbeschränkte Pojektplanung bei vorgegebenen Arbeitsvolumina,

Dissertation, University Karlsruhe.

Inspired Intelligence Initiative (2016), Inspyred: Bio-inspired Algorithms in Python [online],

Available at: http://pythonhosted.org/inspyred/ (18.04.2016).

Jordan, A. and Clement, S. (2004), Handbuch für das Konstruktionssystem NOA, Lehrstuhl für

Maschinenbauinformatik, Otto-von-Guericke-Universität Magdeburg.

Kuster, J., Huber, E., Lippmann, R., Schmid, A., Schneider, E., Witschi, U. and Wüst, R. (2011), Handbuch

Projektmanagement, Springer, Berlin, Heidelberg. ISBN 978–3–642–21242–0

Martins, J. R. and Lambe, A. B. (2013), “Multidisciplinary Design Optimization: A Survey of Architectures”,

AIAA Journal, Vol. 51, No. 9, pp. 2049-2075. DOI 10.2514/1.J051895

Miller, G. A., Galanter, E. and Pribram, K. H. (1960), Plans and the Structure of Behavior, Holt, New York.

ISBN 0–03010–075–5

Schumacher, A. (2013), Optimierung mechanischer Strukturen: Grundlagen und industrielle Anwendungen, 2nd

ed., Springer, Berlin, Heidelberg. ISBN 978–3–64234–699–6

Thonemann, U. and Albers, M. (2010), Operations-Management: Konzepte, Methoden und Anwendungen, 2nd

ed.,Pearson Studium, München. ISBN 978–3–8632–6559–5

Topcuoglu, H., Hariri, S. and Min-You Wu (2002), “Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing”, IEEE Transactions on Parallel and Distributed Systems, Vol.

13 No. 3, pp. 260–274. DOI 10.1109/71.993206

Wünsch, A., Jordan, A. and Vajna, S. (2015), “Simultaneous Optimisation: Strategies for Using Parallelization

Efficiently”, Proceedings of the 20th International Conference on Engineering Design (ICED 15), Vol. 6:

Design Methods and Tools-Part 2. Milan, Italy, 27.–30.07.2015, pp. 133–142. ISBN 978–1–90467–069–8

Wünsch, A. and Vajna, S. (2015), “Effiziente Parallelisierung bei Optimierungsproblemen in der

Produktentwicklung”, 12. Magdeburger Maschinenbautage, Magdeburg, Germany, 30.09.–01.10.2015.

ISBN 978–3–94472–226–9

Wünsch, A. (2017), Effizienter Einsatz von Optimierungsmethoden in der Produktentwicklung durch dynamische

Parallelisierung, Dissertation, Otto von Guericke University Magdeburg. ISBN 978–3–941016–10–1

168

http://pythonhosted.org/inspyred/

	DS87_2_DesProc
	DS87_2_2_538
	Title Page_ICED17_final_401.pdf (p.1)
	Contribution538_b_final.pdf (p.2-10)

