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Abstract 

This paper presents an attempt to make three contributions to engineering design literature on 

the topic of body language. Firstly, through a brief overview of existing work on the role of 

body language in engineering design, we propose the need for alternative tools and 

technologies to manual video coding. Manual video coding is time and resource consuming, 

and we believe that certain parts of data collection and analysis could be automated. 

Secondly, common tools for body language analysis not limited to engineering design is 

presented. These are manual video coding, vision-based motion capture, reflector-based 

motion capture, and inertial sensor-based motion capture. Each is presented together with a 

discussion of strengths and limitations, and potentially relevant use cases. Lastly, a pilot study 

regarding the application of a few, simple inertia-based sensors to recognise gesturing activity 

is shown. Wrist-mounted accelerometers were used to measure gesturing activity. This 

activity was compared to video material of the test subjects. Results from the pilot indicates 

that acceleration above a certain threshold could be linked to gesturing activity. 
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1 Introduction and Background 

In this paper, we attempt to make three contributions to current literature on body language in 

engineering design. Firstly, we present a brief overview of previous work done in this field. 

Most of the work focuses on the role of gestures as a communication channel for forming and 

sharing ideas. These studies rely on the use of manual video coding as analysis method, which 

is time and resource consuming.  Secondly, we provide an overview of tools and technology 

that are commonly used within research on body language as a general topic. Pros and cons of 

each of these tools and technologies are discussed, and recommendations for use in the field 

of engineering design research are provided. Lastly, based on recommendations from the 

second contribution, a pilot study is presented, aiming to investigate if it is possible to use a 

few, simple inertia-based sensors for recognising gesturing activity. This study was done by 

using wrist-mounted accelerometers. Based on comparison between video and sensor output 

data, there is an indication that hand gesturing activity can be recognised when acceleration 

exceeds 0.4 m/s
2
. 

 

Body language is extremely complex. There is not one single ‘channel’ of data, but rather a 

vast number of different information channels, e.g. facial expressions (Hwang & Matsumoto, 

2016), gestures (Cartmill & Goldin-Meadow, 2016), and body movement (Matsumoto, 

Hwang & Frank, 2016). The probably two most relevant aspects of body language for 

engineering design research are the ability to enact physical concepts and ideas (Cash & 

Maier, 2016), and to communicate emotion (Jung, 2011). The role of hand gestures in 

engineering design activities has been studied by several researchers. Tang & Leifer (1991) 

uncover how gestures play an important role in demonstrating actions and establishing 

common understanding during sketching exercises. This is corroborated by Eris, Martelaro, & 

Badke-Schaub (2014) that show how gesturing is related to sketching. Cash & Maier (2016) 

investigate how archetypical gesture sequences occur at critical stages in the design process. 

They emphasise that in addition to play an important role in forming ideas and concepts, 

gestures also strongly contribute to develop shared understanding through mirroring and 

adaption of gestures. Edelman (2011) show some qualitative data that design teams using 

gestures to enact their ideas come up with more novel results. Jung (2011) explore how the 

emotional state of team members, elicited from facial expressions, influence team 

performance. 

Until now, the most common way of approaching body language in engineering design 

contexts has been to apply the tool of manual video coding (section 3.1). This is time and 

resource consuming for the researchers, and due to the amount of time and effort required, it 

is difficult to process enough data to apply robust statistical analyses.  

Progress made in motion capture technology and the field of artificial intelligence opens up 

possibilities when studying body language. Eventually these technologies will enable at least 

parts of data gathering and processing to be done automatically. Data can be captured by 

camera- and sensor-based solutions, and later processed by classifying behaviour based on 

predefined movement patterns or automatically clustering data to identify new behaviour 

patterns. 

 

2 Tools and Technologies for Body Language Analysis 

In order to quantify the effect of body language, we need tools for capturing data. This section 

presents some of the more commonly used tools and technologies when studying body 

language. 



We separate measuring body language into manual and automatic tools (Figure 1). The 

manual tools include direct human observation and manual video coding. Automatic tools 

make use of sensors and intelligent data processing for clustering and classification, without 

humans having to interpret all the data. The tools can further be placed in two broad groups, 

camera-based and wearable-based. Camera-based tools rely on external cameras, recording 

the subject, to gather data. Wearable-based tools require subjects to wear sensors on their 

body for data collection. 

 

Figure 1. Grouping of technologies 

Prior to applying any sort of quantitative analysis to selected situations or contexts, it is useful 

to apply the “tool” of human or direct observation (Dael, Bianchi-Berthouze, Kleinsmith, & 

Mohr, 2016). Human observation is based on the observer making judgements of what they 

see in real time, as opposed to recording data in one way or another for later more detailed 

analysis. This tool is highly qualitative, and is meant to provide an overview of the situation 

or context of interest, preparing the researcher for later stages of their research projects. By 

spending some time observing subject behaviour and movement, the researcher should be 

able better able to shape the later quantitative analysis in terms of detail and focus (Dael et al., 

2016). 

 

2.1 Manual Video Coding 

The most common method for body language analysis is through manual video coding. 

Coders review video recorded during experiments and annotate with context relevant codes. 

These can either be pre determined to support (or reject) existing hypotheses, or emerge 

during the coding process if using a grounded approach (Glaser & Strauss, 2009). There are 

two main approaches when deciding how to treat video content: functional coding and 

anatomical coding (Dael et al., 2016). Functional coding focus on the function of what is 

done, e.g. reaching, pointing, picking up. Anatomical coding describes the movement made 

and orientation from an anatomical standpoint, e.g. right head tilt. There are two common 

techniques for sampling data in manual video coding; event coding and interval coding (Dael 

et al., 2016). When applying event coding to material, the coder classifies codable events 

whenever they occur. Conversely, for interval coding, time is divided into a number of 

intervals and classified by each intervals content.  

Dael et al. (2016) describe a typical coding process where two or more coders first go through 

part of the material individually and then run through an intercoder agreement test. After this 

test, coders discuss areas of disagreement and adjust or remove codes accordingly. Finally, 

the entire corpus of the material can be coded with this new set of agreed upon codes. 



Studies of the role of body language in engineering design heavily rely on manual video 

coding. Most of them are focused on which role gesture plays in design activities (Cash & 

Maier, 2016; Edelman, 2011; Eris et al., 2014; Tang & Leifer, 1991). Jung (2011) explored 

how the emotional state of engineering design team affected the outcome through several 

tools, facial coding as a proxy for team members emotions being one of them. 

Manual video coding is time and resource consuming. A rule of thumb is that five minutes of 

raw video take up to one hour to code. This limits the amount of data that can be coded within 

reason for one study, and it is thus difficult to have large enough test samples in studies to 

apply robust statistical methods. In addition to the video coding itself being time consuming, 

coders must be trained on how to code in order to get coherent results (Dael et al., 2016). The 

real advantage of manual video coding is the flexibility of a human coder, able to pick up 

subtle nuances that is difficult to predict a priori. This is especially important when 

developing a coding scheme for the first time, discovering potential interesting patterns to 

later be investigated with a structured coding scheme. Being entirely camera-based, manual 

video coding can be considered unintrusive due to the fact that subjects are not required to 

attach any form of sensors on their bodies as opposed to the wearable solutions for body 

language acquisition. 

We suggest that manual video coding should be considered in body language studies, where 

human coders are needed to infer meaning from highly context dependent, ambiguous 

behaviour. This tool is excellent for fine grained analysis of human behaviour, taking 

advantage of human ability to understand complex behaviours. Due to the time and resources 

needed for manual video coding, it is mostly suited for studies with limited data, such as 

exploratory studies aiming to define suitable research questions. For studies with larger 

amounts of data, we would recommend considering one of the tools described in the coming 

sections. 

 

2.2 Vision-Based Motion Capture 

Recent development of cheaper sensors and increased computing power has led to motion 

capture solutions like the Microsoft Kinect™ and other webcam-based systems. These 

solutions are not dependent on the user wearing a certain type of sensor on their body, but 

rather try to extract information of body movement from image recognition techniques. The 

Kinect use an infrared camera the project an infrared pattern that enables depth recovery of 

motion (Dael et al., 2016). From this information, either a skeleton structure of the subject can 

be reconstructed (Sudderth, 2006) or a geometric descriptor without any clear anatomical 

meaning can be used for movement interpretation (Kurakin, Zhang, & Liu, 2012). Similar to 

using the Kinect, regular cameras can be applied to tracking as well, but without depth data. 

These systems rely purely on contrasts and colour in the picture to extract information.  

Over the last few years, we have seen several studies where depth sensors are applied to the 

study of body language. Zhang (2012) provide an overview of where depth cameras can be 

applied. Kurakin et al. (2012) describes how depth cameras can be used to recognize dynamic 

hand gestures in real time by using geometric descriptors. The study made by Gabel, Gilad-

Bachrach, Renshaw, & Schuster (2012) showcase a method for full body gait analysis with a 

virtual skeleton structure as input using the Kinect, and Stone & Skubic (2011) made a 

comparison of how web cameras and the Kinect could be used to measure gait. 

Vision-based motion capture is a low cost motion tracking technology where most of the 

value is added in software post-processing. The most important advantage of vision-based 

motion capture is in our opinion the possibility of capturing movement without the need to 

wire up subjects. Due to the low cost of depth sensors, e.g. a Microsoft Kinect costs $99, we 



see an emerging community developing open source software that can be used for free by 

researchers. There are some limitations to vision-based motion capture. One of the most 

apparent issues is that of occlusion (Mitra & Acharya, 2007). Occlusion is an issue for all 

camera-based technologies, where parts of the subject is hidden from view. This bring us to 

an associated limitation; skeletal tracking structures has to be manually reconstructed after 

tracking errors, costing a lot of time and effort. In addition to tracking errors due to occlusion, 

we have also found there to be some issues related to tracking in various light conditions. This 

was especially true for infrared radiation from sunlight. In an engineering design setting, there 

is usually several people involved, moving around to use whiteboards and prototyping 

materials as some of the possible activities. The Microsoft Kinect™ has a limited tracking 

envelope, which is very vulnerable to occlusion from subjects. It is possible to connect 

multiple depth sensors/cameras together for better results (Berger et al., 2011). This requires 

calibration and precise setup of cameras to work. Using purely vision-based tools for motion 

tracking will limit how accurately body parts can be tracked due to limitations of resolution 

and camera placement. This is especially true for hand and finger movement because of 

occlusion between fingers and subtle movements. If hand and finger movement is the interest 

of the study, camera sensors need to be positioned close by, thus limiting the ability to track 

the rest of the body. 

Vision-based motion capture systems seem most suited for settings where subjects are more 

or less stationary, and the chance of occlusions is relatively low. This technology is suitable 

for studies either where relevant movement and behaviour can be identified by intelligent 

algorithms, or studies where the researcher is searching for recurring patterns of movement or 

behaviour. Vision-based systems’ accuracy is limited by subject distance to the camera sensor 

and the possibility of occlusions. This should be kept in mind when designing experiments, 

deciding what level of detail is needed. 

 

2.3 Reflector-Based Motion Capture 

Reflector-based motion capture is a technology widely used in both film and gaming 

industries for animation, and has later been adopted into biomechanical analysis such as ‘full 

body movement’ and ‘gait analysis’. This technology make use of (generally 8-12) infrared 

cameras tracking retro-reflective markers placed on the body (Dael et al., 2016). This data can 

then be represented in various detail levels, such as skeletal structures or point-light displays 

(Ma, Paterson, & Pollick, 2006). 

The survey by Kleinsmith & Bianchi-Berthouze (2013) discusses automatic recognition of 

emotions using body language as at least one input modality. They describe point-light 

displays from IR-reflector systems as one way to collect data. Pollick, Paterson, Bruderlin & 

Sanford (2001) use reflector-based motion capture to show that it is possible to discern 

subjects emotional state from point-light displays of arm movement. Roether, Omlor, 

Christensen & Giese (2009) use the same approach to investigate the perception of emotion 

from gait. 

Reflector-based motion capture systems are highly accurate due to triangulation of reflector 

positions from the multi-camera setup normally used, combined with known position of the 

retro-reflective markers placed on the subject’s body. Using this technology, a precise 

numerical representation of the subject’s body can be represented in three-dimensional space, 

either as Cartesian coordinates or as Euler rotation angles (Dael et al., 2016). Compared to the 

vision-based solutions, reflector-based motion tracking is quite expensive. This can be 

justified when comparing the tracking accuracy, and the trade-off between price and accuracy 

should be considered for each tracking experiment. As with vision-based motion tracking, 



reflector-based tracking require manual cleaning of data due to occlusion. The need for 

manual cleaning of data means that reflector-based motion tracking is less suitable for real-

time applications. One more disadvantage of the reflector-based systems is mobility. 

Requiring 8-12 cameras to be set up and calibrated to track with high accuracy is time and 

labour intensive. In addition to this, there are issues with varying light conditions, skin tone, 

clothing and touching that may cause errors in automatic extraction of body parts with this 

technology. Reflector-based motion capture systems usually have the capability to track more 

than one person at a time. This is highly beneficial in an engineering design context, where 

there usually are two or more persons working together at any time. One other drawback of 

reflector-based motion capture is that subjects are required to wear reflectors on their body, 

which might make them more self conscious of their actions. 

We imagine that appropriate use cases for reflector-based motion capture are quite similar to 

those of vision-based systems. The main difference between the two technologies is that the 

reflector-based systems have a higher accuracy and are more robust in terms of data capture. 

This is mostly due to the use of multiple cameras, but also because the markers attached to the 

subjects provide tracking points of known location on the body. This higher accuracy is 

reflected in the price of such systems, and it is therefore important to know which detail level 

is needed for the study. For fine detail levels, reflector-based motion capture is preferable 

over vision-based systems. These systems may also be very well suited for studies where 

multiple subjects’ motions are tracked. As a side-note, it is important to keep in mind that 

subject behaviour can be influenced by having to wear sensors on their body, the Hawthorne 

effect.  

 

2.4 Inertial Sensor-Based Motion Capture 

All of the beforementioned solutions for capturing body language data have been based on 

external sensors in the form of cameras. As sensors get smaller and more compact, an 

alternative is to use active sensors attached to the subject’s body. Inertial measurement units 

(IMUs), consisting of accelerometers, gyroscopes and sometimes magnetometers, can be 

placed on various body parts to give information about acceleration and orientation. This 

information can then be combined with biomechanical constraints and translate into position 

and velocity data of different body parts. 

One such system is the XSens (Roetenberg, Luinge, & Slycke, 2009) that has been used in 

major Hollywood productions, gaming industry and biomechanical studies. Zhou, Stone, Hu, 

& Harris (2008) use two IMUs attached near the wrist and the elbow joint respectively to 

track the position and angular rotation of the wrist, elbow, and shoulder joint with the aim of 

monitoring the rehabilitation of patients. Zhu & Zhou (2004) also show in their research how 

to combine sensor input from accelerometers, gyroscopes and magnetometers in a novel way 

to increase tracking accuracy for arm movement. 

The core strength of the inertial-based systems is that without any external sensors, the issue 

of occlusion is eliminated. Also, since all sensors needed for motion tracking is worn on the 

participant’s body, the system is very mobile and can be used in almost any setting (Dael et 

al., 2016). This also make the tracking envelope close to infinite, as opposed to camera-based 

solutions that require the subject to be inside the cameras’ field of view. The core issue that 

must be addressed when using inertia-based solutions is sensor drift (Roetenberg et al., 2009). 

One way to address this is by applying biomechanical constraints, i.e. knees and elbows have 

only one axis of rotation and limited travel range. Together with biomechanical constraints, 

sensor fusion algorithms (Zhu & Zhou, 2004) have made inertial-based motion tracking very 

accurate. The sensor fusion algorithms combine data from accelerometers, gyros and 



magnetometers in a way that each sensor’s weakness is countered by the other sensors’ 

strengths. An example is that accelerometers can be used to identify the vertical axis through 

gravity, while magnetometers detect horizontal direction using the earth’s magnetic field 

(Roetenberg et al., 2009). One big drawback with using inertial-based motion tracking is that 

magnetic sensors are incredibly sensitive to surrounding magnetic fields. This means that 

electrical wires and  computers can influence the tracking accuracy quite considerably (Zhu & 

Zhou, 2004). Due to this, it is recommended to move as far away from magnetic sources as 

possible when tracking motion data with this technology, although magnetic disturbances can 

to some extent be reduced through calibration. 

Inertial sensor-based systems are suitable for experiment setups where subjects are moving 

around. Another advantage is that the need for placing cameras with a clear field of view is 

eliminated, which is highly relevant for in-situ studies where spaces can be sectioned off, 

have big furniture, and low ceilings. This technology may be extra advantageous when 

tracking multiple subjects at once, since each subject’s sensor data is self contained – as 

opposed to camera-based systems where all data is collected through cameras and has to be 

sorted in the software. 

 

2.5 Back End Software Interpretation 

In order to make sense of data gathered with automatic tools, we are depending on intelligent 

algorithms for processing and interpretation. This could be to recognise patterns that make up 

a gesture sequence, or a specific shape that translates into a certain posture, providing 

information about the subject’s emotional state. Before this sort of recognition can take place, 

we need to transform the raw data gathered into a form that is interpretable by the recognition 

algorithms. This could be in the form of background extraction for vision-based tools, or 

using biomechanical constraints together with physical equations to translate inertial sensor-

based data into the physical position of body parts. 

 

3 Recommendations 

Technology Pros Cons Use cases 

Manual 

video coding 

High level of detail 

Flexibility of human 

coder 

Unintrusive 

Time and resource 

consuming 

Intercoder reliability 

Limited data points 

Exploratory studies 

Study of highly context 

dependent, ambiguous 

behaviour 

Vision-based 

motion 

capture 

Low cost 

Unintrusive 

Large open source 

community 

Occlusion 

Manual reconstruction 

of data 

Fixed setup due to 

cameras and calibration 

Small tracking envelope 

First trial of motion 

capture 

Fixed subject position 

Pre-defined patterns 

Clustering new patterns  

Reflector-

based 

High precision 

Suitable for multi-

Expensive High accuracy required 

Less fixed positions 



motion 

capture 

person tracking Occlusion 

Manual reconstruction 

Fixed setup due to 

cameras and calibration 

Require the subject to 

wear sensors 

than vision-based 

solutions  

Pre-defined patterns 

Clustering new patterns  

Inertial 

sensor-based 

motion 

capture 

No external sensors 

needed 

High mobility 

No issues with 

occlusion 

Can be used in almost 

all settings 

Expensive 

Vulnerable to magnetic 

fields 

Prone to issues with 

sensor drift 

Require the subject to 

wear sensors 

Lots of movement 

Many obstructions 

Overlapping movement 

of subjects 

Pre-defined patterns 

Clustering new patterns 

Table 1. Comparison of tools and technologies 

Based on our review of the different tools and technologies that can be used for studying body 

language, we believe that inertial sensor-based motion capture is very well suited for studying 

engineering design activities. Firstly, because this technology will require the least amount of 

manual filtering of data. Secondly, because inertial sensor-based systems do not depend on 

external sensors, they act as self contained systems and are not vulnerable to interference of 

other subjects’ data. This is opposed to vision- and reflector-based systems where multiple 

subjects standing close together can lead to tracking errors.  

A pilot study with inertial sensors has been conducted by the authors. Instead of striving to 

capture all possible information, we argue that a reasonable first step is to select a few key 

features to investigate in-depth, and rather expand the number of features later. For this pilot, 

we decided to use accelerometers attached to the subject’s wrists, in an attempt to measure 

when gesturing activity takes place. We did not attempt to investigate the effect of gesturing 

activity, but rather to see if it is possible to determine when gesturing activity takes place. 

Data was recorded at a Design Thinking (Brown, 2008) workshop with two rounds of three 

participants each wearing the sensors for 30 minutes while solving ideation tasks. The sensor 

data was plotted and synced with video recordings to see if there was any correlation between 

gestures seen in the video and acceleration measured with the sensors. We found that gestures 

correspond to accelerations above approx. 0.4 g, and we believe that gesturing activity can be 

identified as time periods where the acceleration of subject hands is exceeding this threshold 

as seen in Figure 2. 

 



Figure 2. Wrist accelerometer data excerpt. 

 

4 Conclusion 

In this paper, attempts at three literature contributions have been made. Firstly, we provide a 

brief overview of existing work in the field of body language in engineering design. 

Secondly, we have presented existing tools and technologies used for the study of body 

language. A brief explanation of how each tool is used has been provided, along with 

examples of how the tools have been used previously. At the end of each section, we attempt 

to provide the reader with recommendations of where to apply these tools for engineering 

design research on body language. An overview of the pros and cons of each tool, along with 

recommended use cases for each, is presented in a table for easier comparison (Table 1). 

Lastly, we have shown how we can approach measuring body language with inertia-based 

sensors by using a few simple sensors attached to the wrists. Using accelerometers and 

comparing output with video as a reference, we have shown that acceleration exceeding 0.4 

m/s
2
 is an indication of gesturing activity (Figure 2). 

Based on this paper, we call for further study of body language in an engineering design 

context using automatic data gathering tools. This should allow researchers to process much 

larger data sets in a shorter time, enabling the use of more robust statistical methods and 

saving vast amounts of time on data analysis. 
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