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Abstract 
The design process often requires work by teams, rather than individuals. During these times it is 
likely that situations will arise in which members of a team have different opinions, yet a group 
decision must still be made. Unfortunately, Arrow’s Impossibility Theorem indicates that there is no 
method for aggregating group preferences that will always satisfy a small number of “fair” conditions. 
This work seeks to identify methods of combining individual preferences that can come close to 
satisfying Arrow’s conditions. Experiential conjoint analysis was used to obtain empirical utility 
functions for drinking mug designs. A number of functions for constructing group preference were 
then analysed using both empirical conjoint preferences and randomly generated preferences. This 
analysis involved checking each of Arrow’s conditions, as well as computing the likelihood that a 
method will be susceptible to manipulation by a dishonest individual. Based on the results, methods 
that should be used to aggregate group preference in practice are recommended. 
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1 INTRODUCTION 

Much of the design process is the result of teams, rather than individuals (Paulus et al., 2011). During 
team-based design, there often arise situations in which members of a team have different opinions, 
yet a group decision must still be made. Unfortunately, a proof by Arrow (1950) indicates that there is 
no method for aggregating group preferences that will always satisfy a small number of “fair” 
conditions. Previous work has examined Arrow’s theorem and its application to design through a 
theoretical approach (Hazelrigg, 1996; Scott and Antonsson, 1999). The work presented in this paper 
uses an empirical approach, which attempts to identify methods for aggregating individual preferences 
that have a high likelihood of being fair, according to the conditions put forth by Arrow. In addition, it 
is often possible for a sole individual to manipulate the outcome of the aggregation procedure if they 
have sufficient knowledge of their teammates’ preferences. For that reason, this work also examines 
the susceptibility of preference aggregation methods to manipulation. 
The empirical individual preferences used in this work were measured through conjoint analysis. 
Conjoint analysis has been widely applied in engineering design problems due to its ability to 
mathematically capture preference using a utility function (Luce and Tukey, 1964; Green, 1974; Green 
and Wind, 1975). In conjoint analysis, data are typically collected through a survey in which 
participants are asked to rate, rank or choose between different offerings composed of varying 
combinations of researcher specified product attributes. Each attribute is described by multiple levels, 
which represent the variability in the parameter being investigated. Levels of different attributes are 
varied based on standard design of experiment techniques. Based on participant response data, 
preference weights can be determined for each attribute and level that was tested during the 
experiment. A mathematical representation of preference can then be created to describe preference 
for every design within the design space under investigation. 
The representations of the product attributes in conjoint analysis were traditionally limited to 
descriptive text. However, recent developments have expanded upon conjoint analysis by utilizing 
more complex forms of attributes. Orsborn et al. (2009) introduced an extension of conjoint analysis, 
termed continuous visual conjoint analysis, which can derive utility functions based upon preference 
for continuous  aesthetic attributes (seen in 2D in that work), resulting in preference that can be 
extrapolated to any point within the continuous design space explored. Several researchers have 
further explored visual conjoint methods (see examples such as Sylcott et al., 2013 and Kelly et al., 
2007). Beyond visual conjoint analysis, Tovares et al. (2014) developed experiential conjoint analysis 
based upon experience based preference judgments (touching, manipulating, etc.), where again 
preference could be extrapolated.  
Once individual preferences are known, it is often necessary to develop a unified group preference that 
considers the preferences of a number of individuals. Functions that create group preference structures 
are generally referred to as aggregation functions. These are simply functions that take as input a set of 
individual rankings, and return a single, group ranking. An important issue when considering any 
aggregation function is manipulability. An aggregation function is manipulable if an individual can 
achieve a more preferred group ranking by misreporting their own preferences. Unfortunately, every 
deterministic aggregation function is manipulable in at least some circumstances (Gibbard, 1973; 
Satterthwaite, 1975). Further, complete information of all individuals’ preferences is necessary to 
compute a dependable manipulation (Bartholdi et al., 1989). Design teams tend to be composed of a 
small number of individuals that are familiar with one another’s preferences (Wegner, 1986). This 
makes it probable that an individual would be capable of collecting the information necessary to 
effectively manipulate a group decision scenario.  
Even if manipulability is disregarded, the aggregation of individual preferences into a group ranking is 
still non-trivial. Consider three individuals, who must form a group ranking over three alternatives (A, 
B, and C). Their set of individual preferences, also known as a preference profile is as follows. 
Individual 1 has the ranking A ≻  B ≻  C, individual 2 has the ranking B ≻  C ≻  A, and individual 3 has 
the ranking C ≻  A ≻  B. This specific preference profile is commonly known as the Condorcet paradox 
(de Condorcet, 1785). One method that can be used to develop the required group ranking is the 
pairwise majority rule. The pairwise majority rule would be implemented as follows: a majority of 
voters prefer A to B, therefore the group should also prefer A to B. A majority of voters also prefer B to 
C, so the group should also reflect this preference. Finally, a majority of voters prefer C to A, so the 
group should prefer C to A. In summary, the group should prefer A to B, B to C, and C to A. This is an 
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irrational and cyclic group preference, and provides no basis upon which to make a decision. 
Motivated by this paradox, Arrow (1950) proved that no aggregation function can always satisfy a 
small set of reasonable conditions. The conditions constituting Arrow’s theorem are stated as follows 
(Arrow, 1950; Nissan, 2007): 
1. Unrestricted Domain: The aggregation function is defined for all preference profiles, for any 

number of voters and any number of alternatives. 
2. Unanimity: If all individuals prefer x to y, then the group ranking must also prefer x to y.  
3. Independence of Irrelevant Alternatives: The group preference between alternatives x and y 

must depend solely on individual preferences between x and y. 
4. Citizen Sovereignty: There exists a preference profile that can make any alternative a winner. 
5. Non-Dictatorship: The aggregation function does not simply return a specific individual’s 

ranking. 
The Independence of Irrelevant Alternatives (IIA) condition is often criticized as being overly 
restrictive (Luca and Raiffa, 1957). Less restrictive versions of this IIA condition have been proposed. 
For instance, Young (1985) proposed Local Independence of Irrelevant Alternatives (LIIA), which 
only considers the removal of the first and last candidates in the group ranking. Despite such criticism, 
other work has demonstrated results similar to Arrow’s that do not depend upon IIA (Seidenfeld et al., 
1989).  
The implications of Arrow’s Theorem for design have become a subject of debate.  Hazelrigg (1996) 
discussed the relationship of Arrow’s Theorem to optimal design, and concluded that commonly used 
methods like Total Quality Management and Quality Function Deployment may provide results that 
do not accurately reflect users’ preferences. Scott and Antonsson (1999) argued that, although group 
decisions must be made in design, the multi-criteria aspect of many design decisions allows group 
preference to be determined without any conflict with Arrow’s Theorem. The current work proposes a 
pragmatic view of Arrow’s theorem within the context of design. While there are cases in which 
design decisions are unambiguous (Scott and Antonsson, 1999), there are also situations in which 
varying opinions between individuals are pivotal (e.g. early conceptual design). For such situations, 
Arrow’s theorem states that there is no procedure for creating a group preference that will always offer 
fair results. 
This work examines Arrow’s theorem from an empirical point of view. Experiential conjoint analysis 
is used to query real preferences for a class of products. Using these empirical preferences, simulated 
voting scenarios are constructed and analysed to determine the extent to which several aggregation 
functions satisfy Arrow’s conditions. Randomly generated individual preference profiles are also 
explored to provide a baseline against which to compare the collected empirical data. The probability 
of manipulation by a dishonest individual is also evaluated within the simulated voting scenarios. 
Finally, the aggregation function that is most likely to provide results that are strategy-proof and fair 
(in accordance with Arrow’s theorem) is proposed. 

2 METHODS  

This work employs a three-step approach combining user studies and computational modelling. First, 
individual preferences for different variations of a parameterized drinking mug were measured through 
experiential conjoint methodology. Second, the results of the conjoint study were used to generate a 
distribution of personal utility functions. Finally, this distribution was used to simulate the 
performance of five aggregation functions. These functions were analysed to assess how often they 
fulfilled Arrow’s conditions, and how often they could be manipulated. 

2.1 Experiential Conjoint Study 
For this analysis, 3D printed ceramic drinking mugs were used as a stimulus to determine individual 
preferences (Tovares et al., 2014). The mugs were 3D printed in accordance with a pre-defined 
experimental design. Three continuous attributes, each represented by three levels, were chosen to 
decompose the product: height (75mm, 95mm, 115mm), base width (40mm, 60mm, 80mm), and 
handle curvature (three Bezier curves, each defined by 3 points). The three levels that were chosen to 
describe the drinking mug design space, created a space containing 27 (33) candidate designs.   
Participants for the empirical portion of the experiment were recruited through two undergraduate 
courses at Carnegie Mellon University, and were compensated with course credit for their 
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participation. In total, 51 participants completed the 25-minute study, which was conducted in two 
parts.  
In the first part, each participant was asked to independently rate 17 ceramic drinking mugs.  The 
drinking mugs were rated on a scale from 1 (least appealing) to 10 (most appealing). Participants were 
presented with one of two random orders of drinking mugs. Data from 15 participants were omitted 
due to failure to meet the minimum accuracy requirements enforced through the duplicate rating task 
in the experiment.  
In the second part of the study, participants were asked to perform a ranking task. Participants were 
asked to independently rank 4 drinking mug designs in order from most appealing to least appealing. 
The designs chosen for this task are shown in Figure 1. These specific designs were chosen to 
represent significant variety across the three attributes. This allowed the participants’ explicit ranking 
to be compared to the ranking predicted through conjoint analysis. 

 
Figure 1. Drinking mugs used for ranking task (from left to right: A, B, C and D).  

2.2 Generating Preference Profiles 
Experiential conjoint analysis was used to build utility functions for every study participant. In this 
work, a 9 question, balanced and orthogonal model was used to estimate the preference model 
parameters. A Gaussian distribution was then used to describe the parameters of these individualized 
utility functions, and build unique, empirical preference profiles. Drawing from an empirically 
developed distribution produces preference combinations that are likely to occur in reality. Merely 
generating all possible preference combinations, or building preference profiles from random 
orderings, would have no such link to real preferences.  
Using the ratings data collected from study participants, the attribute preference weights, 𝜶𝜶, were 
solved for using ordinary least squares regression:  

α = �𝑿𝑿𝑻𝑻𝑿𝑿�−1𝑿𝑿𝑻𝑻𝒚𝒚. (1) 

Here, X is the coded design matrix, and y is the vector containing ratings for each design alternative 
provided by the survey participants. Taking advantage of the continuous nature of the attributes 
employed in this study, differentiable quadratic utility functions are used to model preference. 
Quadratic utility functions were chosen to allow for maxima that were not corner solutions, and to 
remain consistent with prior work (Tovares et al., 2014; Orsborn et al., 2009). The form of this model 
is shown in Equation 2:  

𝑢𝑢𝑟𝑟,𝑞𝑞 =  𝛼𝛼0 + ∑ �𝛼𝛼1,𝑖𝑖𝑿𝑿𝑖𝑖 + 𝛼𝛼2,𝑖𝑖𝑿𝑿𝑖𝑖2�
𝑝𝑝
𝑖𝑖=1 . (2) 

The variable 𝑢𝑢𝑟𝑟,𝑞𝑞 denotes the total utility, u, for the rth participant, and qth design. The calculation of 
the total utility requires the uncoded design matrix, X, and the individual attribute preference weights, 
𝜶𝜶. The quality of each preference model was validated using the mean absolute error criterion. 
After calculating preference weights for each individual using Equation 1, a Gaussian distribution was 
defined to describe the distribution of preference weights. This distribution over the values of 𝛼𝛼 can be 
summarized by the mean vector and covariance matrix of the sample of individual values of 𝛼𝛼. To 
generate a preference profile, a vector is drawn from the 𝛼𝛼-distribution. This vector represents the 
unique utility function for an individual, with a functional form as provided in Equation 2. The utility 
function is then used to calculate a utility for each of m randomly selected design alternatives. Using 
these utilities, the alternatives are ranked in order of decreasing utility, and this ranking is added to the 
preference profile. The process of drawing vectors, creating utility functions, and ranking alternatives 
is repeated n times, thus building an n-individual/m-alternative preference profile. This methodology 
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enables the construction of empirical preference profiles with any number of individuals (n) and any 
number of design alternatives (m).  

2.3 Aggregation functions, Arrow’s Conditions, and Manipulability 
Aggregation functions provide a method for building a group ranking from a preference profile. For an 
aggregation function and a given preference profile, Arrow’s conditions can be evaluated, and whether 
or not the group ranking is manipulable can be determined. By performing this analysis for many 
different preference profiles and the same aggregation function, it becomes possible to estimate the 
probability that the function will satisfy Arrow’s conditions, and the probability that the result can be 
manipulated. 

2.3.1 Aggregation functions 
Five aggregation functions were evaluated as part of this work. These included three positional scoring 
functions (plurality, veto, and Borda), and two multi-step functions (Instant Runoff Voting and 
Copeland). These functions were selected because they are well-studied in the voting theory literature, 
and offer variety in terms of the information that must be provided by individuals, and the complexity 
of computing a group ranking. A positional scoring rule is defined by a scoring vector s of length m, 
where m is the number of alternatives. Each voter allots sk points to their kth most-preferred alternative. 
To establish a group ranking, the number of points scored by each individual is counted. The group 
ranking is simply a ranking of alternatives in order of most points scored. The scoring vectors for the 
plurality, veto, and Borda functions are [1,0, … ,0,0], [1,1, … ,1,0], and [𝑚𝑚 − 1,𝑚𝑚 − 2, … ,1,0], 
respectively. 
The two multi-step aggregation functions used in this work both use the plurality function. The Instant 
Runoff Voting (IRV) function is composed of m rounds. In each round, the plurality function is 
applied, and the alternative with the least points is removed from the alternative set. The next round 
begins with the updated set of alternatives. This continues until only a single alternative remains. The 
group ranking is defined by the order in which alternatives were removed from contention. The 
Copeland aggregation function performs a plurality vote between every pair of alternatives. For every 
pairwise election that an alternative wins, it receives one point. For every loss, it loses one point. The 
group preference is then a ranking of alternatives in order of net points earned. 

2.3.2 Analysis of Arrow’s Conditions and Manipulability 
Let a preference scenario be a combination of a specific preference profile and an aggregation 
function. The aggregation function uses the preference profile to produce a group ranking. For any 
preference scenario, it is possible to check whether or not Arrow’s conditions are satisfied. The 
Unrestricted Domain condition will be addressed by generating profiles with differing numbers of 
alternatives and team members. The Non-Dictatorship and Citizen-Sovereignty conditions are 
dependent only on the aggregation function, and are satisfied by the aggregation functions chosen for 
this work. The Unanimity and IIA conditions are dependent upon the specific preference scenario. The 
unanimity condition was checked by first finding the pairwise preferences that were shared by all 
individuals. If these unanimous preferences were also found in the group preference, then the 
preference scenario satisfied the condition. To assess the IIA condition, the group ranking for the 
preference profile was first computed. Then, an alternative was either added to or removed from the 
set of alternatives. The preference profile was updated according to individuals’ utility functions, and a 
new group ranking was computed. If the relative position of original (or remaining) alternatives in the 
new group ranking was unchanged from that in the original ranking, then the preference scenario 
satisfied the IIA condition.  
Further, we define a concept called Conditional Arrow Fairness. A preference scenario exhibits 
Conditionally Arrow Fairness if it satisfies the Unanimity and IIA conditions, and if the aggregation 
function is non-dictatorial. This concept is conditional upon Arrow’s first condition (Unrestricted 
Domain) because it is checked using preference profiles with a specific number of alternatives and 
individuals. However, by generating and checking many profiles, the probability that a given 
aggregation function will be Conditionally Arrow Fair can be established. This serves as an indication 
of the performance of aggregation functions in their ability to come close to satisfying Arrow’s 
conditions. 
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Perfect knowledge of the preferences of all individuals is often necessary to compute a dependable 
manipulation (Bartholdi et al., 1989). Design teams tend to be composed of a small number of 
individuals, and individuals who work closely as part of a team can become familiar with one 
another’s preferences (Wegner, 1986). If an individual develops sufficient familiarity with their 
teammates’ preferences, manipulation becomes a real possibility. Therefore, every preference scenario 
was assessed to determine if a single individual could manipulate the scenario. This assessment was 
accomplished by modifying the preferences of the manipulator until a successful manipulation was 
found, or until all possible preferences were attempted. A successful manipulation is an individual 
preference modification that would result in a more preferred group ranking for the manipulating 
individual. This process was repeated for every individual as the manipulator. If a successful 
manipulation was not found, then the preference scenario was deemed to be strategy-proof. 

3 RESULTS 

Before presenting the results of the empirical simulations, the results of simulations using random 
preference profiles will be provided. Random preference profiles are a worst-case scenario for the 
formation of group preference, because a random preference profile is likely to show more variance in 
preferences than what would be observed from real-world data. This provides a good basis for 
comparison to the empirical results. For both random and empirical preference profiles, aggregation 
functions are compared using preference profiles with varying numbers of individuals (from 3 to 15) 
and alternatives (from  3 to 6).  

3.1 Random Preference Profiles 
In this section of the analysis, all preference profiles were composed of randomly generated rankings 
of design alternatives (with no input from the conjoint analysis). Randomly generated preferences 
represent a worst-case scenario for the formation of a group ranking since it is unlikely that there will 
exist any tacit agreement. Conditional Arrow Fairness and strategy-proofness were evaluated using 
1000 random preference profiles for every combination of number of individuals (from 3 to 15) and 
number of alternatives (from 3 to 6). Table 1 shows the results for this analysis, averaged across all 
preference profiles. 

Table 1. Average results for random individuals. 

Aggregation function Strategy-proof Unanimity IIA Conditional Arrow Fairness 
Plurality 80.9% 97.1% 1.2% 1.2% 

Veto 74.0% 97.2% 1.2% 1.2% 
Borda 71.6% 100.0% 11.8% 11.8% 

IRV 87.0% 97.4% 1.9% 1.9% 
Copeland 88.1% 100.0% 15.1% 15.1% 

 
Strategy-proofness ranges from approximately 70% for the Borda function to nearly 90% for the 
Copeland function. Conditional Arrow Fairness is hard to achieve with random preference profiles; the 
Borda function and Copeland function have probabilities of Conditional Arrow Fairness that exceed 
10%, but every other function falls below 2%.  The Copeland function achieves both the highest 
probability of Conditional Arrow Fairness and the highest probability of strategy-proofness. Figure 2 
shows the dependence of the Copeland function’s characteristics on the number of individuals and the 
number of alternatives in the preference profile. The contours indicate either the probability of 
Conditional Arrow Fairness (Figure 2(a)), or the probability of strategy-proofness (Figure 2(b)). For 
every grid point in the plot, 1000 random preference profiles were created and analysed. 
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(a) Probability of Conditional Arrow Fairness (b) Probability of strategy-proofness 

Figure 2. Copeland aggregation function characteristics. 
An examination of the contour plots in Figure 2 indicates that the probabilities of both Conditional 
Arrow Fairness and strategy-proofness can be increased by decreasing the number of alternatives. 
Furthermore, despite the fact that Copeland is fairly strategy-proof for most cases, the highest 
probability of Conditional Arrow Fairness that it can obtain is at best slightly greater than 30% in this 
random case. 

3.2 Empirical Preference Profiles 
Here, results are presented that depend upon the empirical data generated from the experiential 
conjoint survey. Data from 15 participants were omitted due to failure to meet the minimum accuracy 
requirements for this duplicate task. The MAE of the remaining participants was calculated to ensure 
that the model predicted accurate ratings for the survey respondents. The mean model MAE was 
1.17±0.59, which is commensurate with the MAE of the experiential conjoint model created by 
Tovares et al (2014).  
Recall that the conjoint analysis was used to create a probability distribution of utility functions, and 
that this distribution was used to create unique empirical preference profiles. Therefore, some 
preference relations will be much more probable than others, resulting in preference profiles that are 
likely to show some level of tacit agreement between individuals. Conditional Arrow Fairness and 
strategy-proofness were evaluated using 1000 empirically generated preference profiles for every 
combination of number of individuals (from 3 to 15) and number of alternatives (from 3 to 6). Table 2 
shows the average results of this analysis, averaged across all preference profiles. 

Table 2. Average results for empirical individuals. 

Aggregation function Strategy-proof Unanimity IIA Conditional Arrow Fairness 
Plurality 94.6% 87.5% 3.9% 3.9% 

Veto 56.5% 91.9% 4.3% 4.3% 
Borda 77.3% 100.0% 39.1% 39.1% 

IRV 97.1% 87.4% 4.5% 4.5% 
Copeland 97.5% 100.0% 66.6% 66.6% 

 
The IRV and Copeland aggregation functions are strategy-proof (not manipulable by a single 
individual) in more than 95% or preference profiles. The veto rule is the worst, since it allows nearly 
half of all preference profiles to be manipulated by an individual. Conditional Arrow Fairness is an 
even starker criterion for differentiating the aggregation functions. Plurality, veto, and IRV provide 
Conditional Arrow Fairness in less than 5% of preference profiles. Borda is slightly better at 
approximately 40%, and Copeland is the best, providing Conditional Arrow Fairness in more than 
65% of preference profiles. For these criteria, Copeland is once again clearly better than the other 
aggregation functions. Figure 3 shows the dependence of the Copeland function’s characteristics on 
the number of individuals and the number of alternatives in the preference profile. The contours 
indicate the probability of Conditional Arrow Fairness (Figure 3(a)), and the probability of strategy-
proofness (Figure 3(b)). Once again, every grid point represents the average of 1000 simulated 
preference scenarios. 
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(a) Probability of Conditional Arrow 

Fairness 
(b) Probability of strategy-proofness 

Figure 3. Copeland aggregation function characteristics.  

The probability of Conditional Arrow Fairness, shown in Figure 3(a), appears to be primarily a 
function of the number of alternatives (with fewer alternatives resulting in a higher probability). The 
probability of strategy-proofness, shown in Figure 3(b), is a function of both number of individuals 
and number of alternatives. The probability of strategy-proofness appears to asymptotically approach 
100% for a large number of individuals and a small number of alternatives. It should be noted that the 
Copeland function is well above 90% strategy-proof for most of the preference profiles explored in 
this analysis. 
The results that have been discussed thus far are predicated upon the utility functions developed 
through ratings-based conjoint analysis. For that reason, participants in the conjoint study were also 
asked to explicitly rank a subset of four designs (the same four designs shown in Figure 1). This 
allows the comparison of the group ranking predicted by the utility functions to be compared to the 
group ranking computed directly from rankings provided by study participants. Table 3 shows the 
group preferences predicted from the conjoint utility functions, the group preferences computed 
directly from the ranking task data, and the Kendall’s Tau statistic relating the two rankings. Any 
differences between the two aggregate rankings are underlined. Most aggregation functions (Plurality, 
Borda, IRV and Copeland), return an aggregate utility-based ranking that is in perfect agreement with 
the aggregate empirical ranking. The sole exception is the Veto aggregation function, which displays 
disagreement amongst the top two alternatives. The Veto aggregation function is the only function 
explored in this work that directly counts votes against the least preferred alternatives. All other 
functions count, in some way, votes that support various alternatives. Therefore, this result could 
indicate that voting in support of design alternatives more firmly resolves a group preference structure. 

Table 3. Comparison of group preference from utility function and ranking data. 

Aggregation function Utility Function 
Group Preference 

Ranking Data 
Group Preference 

Kendall’s 𝜏𝜏 Correlation 
Coefficient 

Plurality, Borda, IRV 
and Copeland 

A ≻  B ≻  C ≻  D A ≻  B ≻  C ≻  D 1.000 

Veto B ≻  A ≻  B ≻  D A ≻  B ≻  C ≻  D 0.667 

4 DISCUSSION 

This work used both empirical preference profiles (generated from experiential conjoint study results) 
and uniform random preference profiles. Uniform random preference profiles serve as a worst-case 
scenario for the formation of group preference, because it is unlikely that individuals will display 
agreement. In more realistic preference profiles, it is likely that individuals will agree on at least some 
preference judgements. And it a segment is properly created then alignment should become even more 
consistent. A detailed analysis using both random and empirical preference profiles was performed 
with 8 individuals and 5 alternatives (Tables 1 and 2). For both uniform random and empirical 
preference profiles, the Copeland aggregation function displayed the highest probability of 
Conditional Arrow Fairness, and of being strategy-proof. For some empirical profiles, the probability 
of Conditional Arrow Fairness can exceed 80%, and the probability of strategy-proofness exceeds 
98%  (see Figure 3). However, for uniform random preference profiles, the probability that Copeland 
will fail Conditional Arrow Fairness can exceed 90% (see Figure 2(a)). This motivates a discussion of 
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the practical implications of a failure of Conditional Arrow Fairness, which may result from a failure 
of either IIA or Unanimity. 
A failure of Unanimity indicates that all individuals in a preference profile ranked x over y, but the 
group ranking did not. This is not always an egregious fault. Assume that a group is trying to select 
their most preferred alternative from the set {a, b, c, x, y} and all members of a group prefer alternate x 
to alternative y. If the final group ranking is a ≻  b ≻  c ≻  y ≻  x, the failure of Unanimity is relatively 
harmless. However, if the final group ranking is y ≻  x ≻  a ≻  b ≻  c, the failure of Unanimity is much 
more serious. A failure of IIA is more likely than a failure of Unanimity (see Tables 1 and 2). IIA 
failure means that adding (or removing) an alternative from the preference profile changes the relative 
ranking of the original (or remaining) alternatives. Consider a situation in which the group ranking is a 
≻  b ≻  c ≻  d, but the addition of alternative x changes the group ranking to a ≻  b ≻  d ≻  x ≻  c. The 
relative ranking of alternative c and d changed. If the purpose of the construction of the group ranking 
is to select the most preferred alternative, then this failure of IIA is inconsequential.  However, if the 
purpose of the ranking is to eliminate the least preferred alternative, the result is more troublesome. 
These examples illustrate the fact that the importance of any failure of Conditional Arrow Fairness is 
highly context-dependent. Utilizing an aggregation function that has a high probability of Conditional 
Arrow Fairness provides protection against both trivial and serious failures of these conditions. By 
structuring decisions so that the number of individuals is much larger than the number of alternatives, 
the Copeland function can achieve a high probability of Conditional Arrow Fairness (over 80% in this 
case), thus protecting against failures of IIA and Unanimity in the majority of situations. 
Often, preference data from user surveys must be aggregated into a single group preference before use 
in design. According to this study, the application of the Copeland aggregation function to this task 
would maximize the likelihood that the resulting group ranking has fair characteristics (as defined by 
Arrow’s conditions). Our results also indicate that keeping the number of alternatives in such tasks 
small (relative to the number of participants) increases the probability of a developing a fair group 
ranking.  
The results of this work are sufficiently general that they have potential be applied to domains other 
than the aggregation of user data. For instance, it is often necessary for design teams to rank design 
alternatives, usually to narrow down the number of alternatives before continuing work. If the quality 
of the designs is not readily quantifiable, preference over design alternatives becomes a matter of 
personal opinion. Therefore, individuals’ rankings over design alternatives may vary enough that the 
group ranking isn’t immediately obvious. Applying the Copeland function in this situation would 
allow the team to form a group ranking that is more likely to have fair characteristics. The result 
would also have a higher likelihood of strategy-proofness, meaning that team members would have no 
incentive to provide anything but their true ranking of the alternatives. 

5 CONCLUSIONS 

This work took an empirical approach to examine several methods for combining individual 
preferences into a group preference. Each of these methods, commonly referred to in this work as 
aggregation functions, was analysed in terms of manipulability and Conditional Arrow Fairness. Of 
the aggregation functions explored in this work, the Copeland function offers the highest probability 
of Conditional Arrow Fairness and the highest probability of strategy-proofness. This indicates that it 
is likely to return a fair result, and that individuals would thus have no incentive to provide anything 
but their true preference for the alternatives. The Copeland function could be applied to a variety of 
domains, including the aggregation of preferences from user survey and decision-making during the 
design process.  
Future work should extend this analysis to a larger set of aggregation functions, and explore the use of 
the Copeland function in more complex and longitudinal design contexts. In addition, the effort 
required from an individual to quickly and accurately compute a manipulation should be examined. 
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