
ICED15

SIMULTANEOUS OPTIMISATION: STRATEGIES FOR USING
PARALLELIZATION EFFICENTLY
Wünsch, Andreas; Jordan, André; Vajna, Sándor
Otto-von-Guericke University Magdeburg, Germany

Abstract
Efficiency plays a major role in any facet of product development. The product has to be efficient
itself, but the processes of product development have to be efficient as well. Analysis and simulation
enable engineers to evaluate new products without the need for physical prototyping and improve
them by optimisation methods. Since parallel computing was introduced the process of product
optimisation became more efficient. However, it is very susceptible to bottlenecks like any the lack of
available resources.
We transfer the approach of simultaneous engineering to an optimisation framework. The term
simultaneous optimisation is introduced in order to use the available resources in an efficient way and
to reduce idleness of the resources. To verify the framework it was tested in an industry-related
workstation cluster. In this approach resources are floating and can become available or busy in order
to the current use of a machine or the unavailability of licenses. The presented approach works in both
homogenous and heterogeneous workstation clusters.

Keywords: Concurrent Engineering, Design informatics, Integrated Product Development,
Optimisation, Simulation

Contact:
Andreas Wünsch
Otto-von-Guericke University Magdeburg
Chair of Information Technologies in Mechanical Engineering
Germany
andreas.wuensch@ovgu.de

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED15
27-30 JULY 2015, POLITECNICO DI MILANO, ITALY

Please cite this paper as:
 Surnames, Initials: Title of paper. In: Proceedings of the 20th International Conference on Engineering Design

(ICED15), Vol. nn: Title of Volume, Milan, Italy, 27.-30.07.2015

1

ICED15

1 INTRODUCTION

Markets are becoming increasingly competitive. In order to sustain market share, organisations have to
work in a customer-oriented approach for designing and producing high-quality, high-value products.
Analysis and simulation enable engineers to evaluate new products without the need for physical
prototyping. The area of computer aided engineering has seen an enormous growth in the past years. It
has established itself as an important part of the product development process.
However, efficiency plays a big role in this process in any facet. Obviously the product has to be
efficient itself in the use phase, but as well in the manufacturing phase and in the end of life phase.
Furthermore, mostly from the company’s perspective the product development process has to be
efficient, too. Bottlenecks should be avoided and the available resources should not become idle.
The research question can be formulated like this: How can parallelization methods be used to solve
optimisation problems in an efficient way regarding available resources?
The structure of this paper is as follows. Firstly, we present how parallelization is used in the product
development process. Then, we focus on the application of parallelization methods in optimisation
problems.
Since the activities of a product developer can be seen as a continuous optimisation processes, we
transfer the approach of simultaneous engineering to an optimisation framework by using an open
source Software for High Throughput Computing.
The term simultaneous optimisation is introduced in order to use the available resources in an efficient
way. This approach works in both homogenous and heterogeneous workstation clusters. A
homogenous cluster is defined as one having identical workstations connected by a switch, whereas a
heterogeneous cluster is one where the workstation hardware and available software are not identical.
Finally, a case study and some concluding remarks are presented.

2 PARALLELIZATION OF ENGINEERING PROCESSES

Working on tasks in a serial way is the most intuitive and natural way of working. In this case only a
little amount of organisation and planning is needed. One of the first models to be proposed is the
waterfall model that was introduced by Royce (1970) to prescribe software development activities. In
this model the stages are depicted as cascading from one to another. So, one development stage has to
be completed before the next begins. The waterfall model presents a very high-level view on the
processes during development and it suggests to developers the sequence of activities and processes
they should expect to encounter. Milestones and deliverables are associated with each process activity.
Project managers can use the model easily to gauge how close the project is to the completion at a
given point in time (Pfleeger, 1998).
Simultaneous engineering (SE) describes a philosophy for parallelizing engineering work during the
product development process and has been proposed as a potential to improve product development
practice. It involves simultaneously satisfying the functionality, reliability, manufacturability, and
marketability concerns of new products in order to reduce product development time, to achieve
higher product quality and value, and to reduce the time taken to introduce new products (Molina et al.
1995). In this context the objectives focus on (Winner et al. 1988, Nevins and Whitney 1989):
• Reduction of development lead times of the product
• Improvement of quality of the product
• Reduction of life cycle costs of the product
Winner et al. (1988) define SE as a systematic approach to the integrated and concurrent design of
products and their related processes including manufacture and support. This approach is intended to
cause the developers, from the outset, to consider all elements of the product life cycle from
conception through disposal, including quality, cost, schedule, and user requirements.
Cleetus (1992) has proposed a new definition of SE or concurrent engineering (CE). In his definition
CE is a systematic approach to integrated product development that emphasizes response to customer
expectations and embodies team values of cooperation, trust, and sharing in such a manner that
decision making proceeds with large intervals of parallel working by all life cycle perspectives,
synchronised by comparatively brief exchanges to produce consensus.

2

ICED15

Since SE and CE were introduced many papers dealt with research on computer aided systems to
support simultaneous engineering and its collaborative processes. These papers were presented,
reviewed, and classified by Molina et al. (1995).
In both previously introduced definitions there is no separation between SE and CE. Both concepts are
quite similar. However, the authors of this paper distinguish between SE and CE. In product
development parallel processing can be done either by SE or CE or the combination of both. In the SE
philosophy different activities can be overlapped and can be done in parallel to work efficient in order
to costs and time, e.g. design processes and the planning of the manufacturing processes can be done
in parallel.
Within CE, a complex task is divided among several people of a team. The team members work in
parallel on their particular piece of the complex task. In CE the definition of physically and logically
demarcated areas is necessary with clear interfaces (e.g. design spaces), which are merged and
matched at the end of an activity and compared with each other (Figure 1).
The most important criterion for parallelizing processes and activities by SE and CE is the question
when the results of the previously begun activity are stable so far, that the statistical probability of a
change and the associated change in costs are lower than the costs, which are caused by continue
working too late (Vajna et al., 2009).

Figure 1. Simultaneous engineering and concurrent engineering (Vajna, 2014)

3 PARALLELIZATION METHODS IN OPTIMISATION

Optimisation problems often lead to high computational cost, especially when numerical simulation is
used to evaluate the different solutions of a product (e.g. finite element analysis, computational fluid
dynamics). One of the general aims of an optimisation problem is to find the global optimum of the
particular problem. Stochastic optimisation methods can help to find the global optimum.
Contrary to deterministic optimisation methods stochastic methods deliver a high probability to find
the global optimum. However, stochastic methods yield to additional high computational cost. The
most important stochastic methods are Genetic Algorithms (GA), Monte Carlo, Particle Swarm, and
Simulated Annealing. Due to the fact that stochastic methods work stepwise, the different evaluations
are independent from each other. Since the single evaluations are independent, different methods and
frameworks have been established to reduce the computational cost. These methods are presented in
the following section including their strengths and weaknesses. Furthermore we introduce a new
strategy for parallelization: Simultaneous Optimisation (SO).

3.1 Parallelization in Optimisation
Genetic algorithms (GA) are naturally parallel, since the individuals are evaluated per generation. The
individuals of one generation are computed and analysed independently. Two popular approaches
exist to configure the system when parallel processing is combined with GA’s:
• Master-slave model
• Island-migration model

Time Reduction

Time

Activity 1

Activity 2

Activity 3

Activity 4

Activity 1

Activity 2.1

Activity 2.2TS M
&

M

Activity 3.1

Activity 3.2TS M
&

M

Activity 4

SE

CE

TS - Task Sharing
M&M - Merging and Matching

3

ICED15

The most popular approach is the master-slave model, where the master process directs the
optimisation process and the program flow by assigning tasks to the slave processes. Typically, the
slave processes evaluate the individuals and compute the fitness values. The master process uses this
information and creates the next generation.
In the island-migration model, the entire population is divided into subpopulations (so-called islands)
that are associated with different processors or machines. The best individuals are exchanged between
the subpopulations (so-called migration) when disparate populations evolve periodically (Rajan and
Nguyen, 2004). In this paper island-migration is not considered, since this is leads to increased effort
in the configuration of the algorithm, but we can mention that the introduced method will work in
island-migration models, too.
As stochastic optimisation methods design space exploration methods like Design of Experiment
studies (DoE) consist of independent evaluations. That makes them very applicable for parallelization.
Tzannetakis and Van de Peer (2002) present an approach to use optimisation combined with parallel-
generated surrogate models. In this approach a number of heterogeneous workstations in a cluster can
be assigned in order to execute the DoE plan.
Using a GA two basic approaches of implementing distributed computing were introduced by
Fritzsche et al. (2012):
• Parallelization of each individual evaluation of a generation
• Parallelization by using a distributed virtual machine
The first approach is very obvious and similar to the master-slave model. Each complete individual of
a generation is sent to a slave that computes the entire evaluation of the related individual. This works
only in a homogeneous cluster. All workstations have to have installed all the associated software. The
further development of this approach is to share only parts of the evaluation process, which makes it
more flexible. But in this approach no flexible resource management is included and the introduced
optimisation software has to run as a logged in user on any machine. However, no other user can use a
workstation of this cluster spontaneously without interrupting the optimisation run.
The second approach compromises the application of a distributed virtual machine which consists of
many different single workstations. The optimisation process runs on this virtual machine with a large
amount of available CPU and memory. The disadvantage of this approach is the high administrative
effort to make it work stable and to get the software running in this special virtual environment
(Fritzsche et al., 2012).
A totally different approach for using parallelization in optimisation methods is to parallelize different
algorithms in order to increase the possibility to find the global optimum to the problem. In this multi-
algorithm infrastructure different algorithms compete in parallel for a contribution towards a single
global stopping criterion. For this kind of parallelization a cluster of up to 128 machines was used
(Groenwold and Hindley, 2002). To run this method efficiently a homogenous cluster should be
preferred.
The previously mentioned parallelization methods show the wide bandwidth of using parallelization in
optimisation and design space exploration. For engineering design problems, from a computational
viewpoint, the evaluation of a model is the most expensive step. This evaluation includes the model
generation, solving, and result extraction. Regarding a stochastic optimisation method such as a GA
this evaluation is called fitness evaluation which delivers a so-called fitness value to evaluate a model
or individual. There are two common approaches for parallelizing the fitness evaluation (see Figure 2).
In both examples we distinguish between creation of individuals (e.g. creating CAD geometry,
meshing, or setting up loadcases) and evaluation (e.g. numerical solving).

4

ICED15

Figure 2. Full parallelization (left) and load case parallelization (right)

The major advantage of both methods is the relatively low administrative effort. The full
parallelization of a whole generation is very efficient, because all individuals are independent from
each other. The most efficient way is to use the same number of workstations as the population size,
which leads to high computational costs in hardware resources and available licenses since population
size becomes high. The second risk of this method is the possibility of bottlenecks in the evaluation
process, especially when it consists of many different load cases or simulations. The whole process
has to wait for the slowest simulation and workstations become idle.
The second method of parallelizing different loadcases is very easy to configure. This method should
be very useful for the use in deterministic optimisation methods. Using this method in stochastic
optimisations is not very efficient.
However, in real world applications resources play a major role. This includes hardware resources and
available licenses. In our opinion a flexible resource management system has to be considered in any
parallelization method. The second aim of using parallelization efficiently is to avoid idleness of
machines.

3.2 Simultaneous Optimisation and Concurrent Optimisation
To avoid machines become idle due to bottlenecks in the evaluation process and using the available
resources efficiently we transferred product development processes to optimisation strategies. The
major goal of both approaches is quite similar: using the available resources efficiently. Due to this
transfer we introduce two terms: concurrent optimisation and simultaneous optimisation. As in product
development processes the concurrent optimisation approach a complex evaluation task is divided
among several machines of a cluster (see 3.1). In simultaneous optimisation different parts of the
evaluation process can be overlapped and can be done in parallel. The aim of this approach is to
parallelize the evaluation process maximally regarding available resources (machines, licences).
An example application is shown in Figure 3. The bottleneck in this example is the creation of new
individuals (e.g. meshing due to limited licenses). Evaluation of the individuals is not limited. Due to
the limited resource of e.g. only one available license for meshing the optimisation study must be
executed serially which is not efficient. The optimisation study can be done more efficient with the
simultaneous optimisation approach. In this scenario the creation of a new individual starts when the
previous individual was created and the license for meshing becomes available.
The main issues of simultaneous optimisation can be formulated as the following: as soon needed
resource becomes available and the needed information and inputs are available as well, the process
will be executed.

5

ICED15

Figure 3. Simultaneous optimisation

As product development processes show, performing tasks concurrently or simultaneously leads to
high effort in communication and management, which is similar to simultaneous optimisation, too. To
handle this effort we designed a framework that manages the communication and available resources
using methods of cluster computing. In this framework the user has just to define the available
resources.

3.3 Cluster Computing
High Performance Computing (HPC) or and High Throughput Computing (HTC) are a necessity for
solving computationally intensive problems in scientific research, engineering and product
development such as numerical simulation and optimisation. Using supercomputers was previously
reserved for large institutions because of their very high costs.
In recent years, the technology has evolved so that the performance of commercial workstations has
more approximated to the level of supercomputers. Thus, low-cost HPC environments for all use of
engineering calculations can be built by using computers interconnected via high-speed networks. In
essence, the rapid increase in microprocessor performance and network bandwidth has made clustering
a practical, cost effective computing solution which is readily available to the masses. At the hardware
level, a cluster is simply a collection of independent systems, typically workstations, connected via a
commodity network.
Cluster computing has emerged as practical, cost-effective complement to HPC environments for
several reasons (Zomaya, 1996):
• Easy to build up: Anyone with two or more workstations connected via a network can create a

cluster. Little or no additional cost is involved.
• A cluster provides a readily available environment for research into parallel computing.
• Unused computing cycles can be scavenged which provides additional computing capacity at no

additional cost.
• Robust and stable software systems for clustering are commonly available.
Especially workstation clusters offer many benefits when compared to other computing solutions. The
most favourable characteristic is that clustering is relatively simple in implementation and
administration, and involved only with no or little additional cost. Workstations are designed to be
excellent at serving the interactive job requirements of users. However, most workstations are used for
interactive work during normal business hours, too. Due to this fact a plenty number of CPU resources
is available in nonprime hours. A properly configured cluster can provide both prime-time interactive
cycles and nonprime-time batch cycles which yields to a more cost effective computing environment
(Zomaya, 1996).
Although there are many benefits of workstation clusters, they should be seen as practical
replacements for general-purpose supercomputers. However, clusters should be treated as
complementary components of high-performance computing environments.

6

ICED15

Because clusters are relatively simple to configure, it is important to categorize which jobs are most
conducive to this environment. Studies by several supercomputing centres have shown that many
applications presently executing on supercomputers do not absolutely require supercomputing
resources (Zomaya, 1996).
With distributed applications, tasks and calculations are carried out simultaneously on several
workstations, in which the tasks are independent from each other. Parallel applications however also
expect the same time on multiple machines, but here the tasks are interdependent. To set up, configure
and direct the mentioned kinds of cluster a software cluster management system is needed. Most of
these systems include a job scheduling tool as well. To find an appropriate solution we formulated the
following requirements:
• Platform: Windows 7, 64 Bit
• Using workstations in an undergraduate computer lab
• No disadvantages for students who work on the workstations
• Easy to administrate
Regarding to the requirements we searched for an appropriate solution. The systems we found were
evaluated by a simple comparison of advantages and disadvantages (see appendix). Due to
its versatility, simplicity, and features of a classic batch system we selected HTCondor (Center for
High Throughput Computing, 2014). The major features and its architecture are described in the
following section.

3.4 HTCondor
HTCondor is a software system that creates a HTC environment by using the computing power of
workstations that communicate over a network to build a workstation cluster. To submit a job to the
cluster the job just must be submitted to the software system that finds an available workstation in the
cluster and starts running the job on that workstation.
The software has the capability to detect that a machine running a job is no longer available (e.g. when
the owner of the machine came back from lunch and started typing on the keyboard). It can checkpoint
the job and move the job to a different machine, which would otherwise be idle and which continues
the job on this new machine from precisely where it was left off.
There is no need to share a common file system between the workstations. The necessary files are
transferred from on workstation to another. Due to this fact machines across an entire enterprise can
run a job, including machines in different administrative domains.
To run jobs on a remote machine no login on the remote machine is needed because the software uses
its remote system call technology, which traps library calls for such operations as reading or writing
from disk files.
Compared to other cluster management systems that attach properties to the job queues themselves,
HTCondor provides a resource management by so-called match-making resource owners with
resource consumers. That makes it quite easy to handle resources in heterogeneous clusters, e.g.
licenses, installed software, different hardware (Center for High Throughput Computing, 2014).
HTCondor uses the Master-Worker (MW) system. The MW principle is very suitable to solve a
problem of indeterminate size on a large and unreliable workforce. It is well-suited for parameter
searches and optimisation problems where large parts of the problem space may be examined
independently.
In this model the master directs the computation with the assistance of as many remote workstations as
the computing environment can provide. It contains three components: a work list, a tracking module,
and a steering module. The work list is simply a record of all tasks to be done. The tracking module
tracks the worker processes and assigns uncompleted tasks. The steering module controls the
computation. It examines results, modifies the work list, and provides a sufficient number of worker
processes. Due to the fact that the workers could be unreliable e.g. they disappear when machines
crash and they reappear as new resources when machines become available. If a worker disappears
while processing a job, the tracking module returns the job back to the work list (Thain et al., 2004).
Basney et al. (1999) present a framework for conducting large scale Monte Carlo studies by using
HTCondor. Furthermore, the software was already used for a huge number of different problems and
applications such as the simulation of engines, neural networks, high energy physics events, computer
hardware and software, the behaviour of crystals and randomized optimisation techniques.

7

ICED15

4 CASE STUDY

For this study we built up a workstation cluster that consists of 25 workstations (Windows 7 64 Bit,
CPU: Intel Xeon E1290 3,60 GHz, 16 GB RAM) in an existing undergraduate computer lab. Similar
clusters may be built up at most institutes, where a large number of free standing workstations is
available, at very little cost.
This case study consists of a simple optimisation problem using a GA. The evaluation process consists
of five processes: on process for meshing and preprocessing and four loadcases of numerical solving.
The average processing time of each subprocess is shown in Figure 4.

Figure 4. Processing time of the processes of the simulation

The optimisation study is executed in four different ways of parallelization: serial, load case parallel,
simultaneous optimisation, and fully parallel (ideal, no bottle necks). Using a GA only the evaluations
in a generation are independent from each other. Due to this fact, only the evaluations in a generation
can be evaluated in parallel. The population size in this example is 50. The results of the case study are
shown in Table 1.

Table 1. Results of the case study

Parallelization Method Time per Generation Resources
Serial

Create Individual Evaluate
Individual Create Individual Evaluate

Individual Create Individual Evaluate
Individual

Optimization

n1 n2 ni

...

Population

2800 min / 46,6 h Machines:
Lic. PP:

Lic. Solv.:

1
1
1

Load Case Parallel

Create Individual
Evaluate
Individual

(Load Case 1)

Optimization

n1...ni

Evaluate
Individual

(Load Case 2)

Evaluate
Individual

(Load Case j)

Population

...

1450 min / 24,16 h Machines:
Lic. PP:

Lic. Solv.:

5
1
4

Simultaneous Optimisation

Create Individual Evaluate
Individual

Create Individual Evaluate
Individual

Create Individual Evaluate
Individual

Optimization

n1

n2

ni

...

Population

470 min / 7,83 h Machines:
Lic. PP:

Lic. Solv.:

9
1
8

Fully Parallel (no bottle necks)

Create Individual Evaluate
Individual

Create Individual Evaluate
Individual

Create Individual Evaluate
Individual

Optimization

n1

n2

ni

...

Population

56 min / 0,93 h Machines:
Lic. PP:

Lic. Solv.:

50
50
50

9 12 12 3 20
0

5

10

15

20

25

Meshing and
Preprocessing

Load Case 1
(Linear Static)

Load Case 2
(Linear Static)

Load Case 3
(Natural

Frequencies)

Load Case 4
(Nonlinear

Static)

Pr
oc

es
si

ng
 T

im
e

[m
in

]

8

ICED15

Obviously, the full parallelization is very fast and efficient, but it needs a lot of resources. It shows the
ideal parallelization and is more a theoretical example of the ideal situation. In this study we used
simultaneous optimisation very efficient using only one license for preprocessing and 8 licenses for
solving. If more licenses or machines were available the processing time per generation would
decrease as well. As more resources would be available as more the simulations optimisation would be
aligned to the ideal of full parallelization.
The major risks of executing the optimisation fully parallel are bottlenecks. If the number of resources
becomes lower than the population size or a factor of it (e.g. a machine fails or a license is needed by
another user) the process becomes very inefficient. If a machine would fail in a simultaneous
optimisation, the evaluation of one generation needs more time, but in the framework the subprocesses
would be distributed on the available machines autonomously. The machines in this framework don’t
need to be homogenous. The only requirement to any machine is to be able to execute a task of the
evaluation process.
The framework was tested, while the computer lab was periodically and spontaneously used by
undergraduate students. When a student started to use a machine of the cluster, the machine finished
the current job and did not execute any other jobs of the evaluation process. When the machine
became free again, it started to execute jobs again. In this scenario the optimisation needs more time,
but it keeps using its available resources efficiently. These so-called floating resources could not be
used in a similar way in the fully parallel approach.

5 CONLCUSION AND OUTLOOK

In this paper we transferred simultaneous engineering and concurrent engineering from product
development to optimisation methods and introduced the terms simultaneous optimisation and
concurrent optimisation as an approach to use available resources such as machines and licenses
efficiently.
The developed framework was tested in a case study in an existing undergraduate computer lab while
students worked periodically and spontaneously on different workstations in this lab. This case study
is similar to an industry-related environment where workstations in a cluster could be available while
breaks at night or on weekend. The framework works well in both homogenous and heterogeneous
network of workstations clusters. Any idle workstation can be implemented in the cluster very easily
and users can work on the workstations interactively at any moment. By these facts our approach
stands out from other applications in industry.
The simultaneous optimisation approach was developed and tested using a GA since it is easy to
parallelize, but it is possible to use it in different stochastic optimisation methods and hybrid
optimisation (combination of deterministic and stochastic optimisation) methods as well. This issue
merits further research. Further research will also be done on managing hierarchies between tasks of
an optimisation study and simulation tasks of the engineer’s daily work. If no resource is available to
execute a simulation of daily work the optimisation study should vacate and share its resources.

REFERENCES
Basney, J.; Raman, R.; Livny, M. (1999), "High Throughput Monte Carlo", Proceedings of the Ninth SIAM

Conference on Parallel Processing for Scientific Computing, San Antonio, Texas.
Center for High Throughput Computing, University of Wisconsin-Madison (2014), HTCondor™ Version 8.2.3

Manual.
Center for High Throughput Computing, University of Wisconsin-Madison (2014), Computing with

HTCondor™, http://research.cs.wisc.edu/htcondor/ (10.11.2014)
Cleetus, K. J., 1992, "Definition of Concurrent Engineering", CERC Technical Report Series, CERC-TR-RN-92-

003.
Fritzsche, M., Kittel, K., Blankenburg, A. and Vajna, S. (2012), “Multidisciplinary design optimisation of a

recurve bow based on applications of the autogenetic design theory and distributed computing”, Enterprise
Information Systems, Vol. 6 No. 3, pp. 329–343.

Gordon, R. (2013), Oddjob, http://rgordon.co.uk/oddjob/index.html (10.11.2014)
Grid Engine (2014), Open Grid Scheduler, http://gridscheduler.sourceforge.net/index.html (10.11.2014)
Groenwold, A.A. and Hindley, M.P. (2002), “Competing parallel algorithms in structural optimisation”,

Structural and Multidisciplinary Optimisation, Vol. 24 No. 5, pp. 343–350.
JPPF (2014), JPPF, http://www.jppf.org/ (10.11.2014)

9

ICED15

Molina, A., Al-Ashaab, A., Ellis, T., Young, R. and Bell, R. (1995), “A review of computer-aided Simultaneous
Engineering systems”, Research in Engineering Design, Vol. 7 No. 1, pp. 38–63.

Nevins, J. L. and Whitney, D. E. (1989), Concurrent Design of Product and Processes: A Strategy for the Next
Generation in Manufacturing, McGraw-Hill, New York.

Pfleeger, S.L. (1998), Software engineering: Theory and practice, Prentice Hall, Upper Saddle River, NJ.
Rajan, S.D. and Nguyen, D.T. (2004), “Design optimisation of discrete structural systems using MPI-enabled

genetic algorithm”, Structural and Multidisciplinary Optimisation, Vol. 28 No. 5, pp. 340–348.
Royce, W.W., “Managing the development of large software systems”, in Proceedings of IEEE Wescon 1970, p.

382.
SOS GmbH (2014), JobScheduler, http://www.sos-

berlin.com/modules/cjaycontent/index.php?id=62&page=osource_scheduler_introduction_en.htm
(10.11.2014)

Thain, D., Tannenbaum, T. and Livny, M. (2004), Distributed Computing in Practice: The Condor Experience.
Tzannetakis, N. and Van de Peer, J. (2002), “Design optimisation through parallel-generated surrogate models,

optimisation methodologies and the utility of legacy simulation software”, Structural and Multidisciplinary
Optimisation, Vol. 23, pp. 170–186.

University of Liverpool (2014), High Throughput Computing using Condor, http://condor.liv.ac.uk/DTCondor/
(10.11.2014)

Vajna, S. (Ed.) (2014), Integrated Design Engineering: Ein interdisziplinäres Modell für die ganzheitliche
Produktentwicklung, Aufl. 2014, Springer, Berlin, Heidelberg.

Vajna, S., Weber, C., Bley, H. and Zeman, K. (2009), CAx für Ingenieure: Eine praxisbezogene Einführung, 2.,
völlig neu bearb. Aufl., Springer, Berlin, Heidelberg.

Winner, R. I., Pennell, J. P., Bertrand, H. E. and Slusarezuk, M. M. G., 1988, "The Role of Concurrent
Engineering in Weapon System Acquisition", IDA-Report R-338.

Zomaya, A.Y. (1996), Parallel and distributed computing handbook, Computer engineering series, McGraw-Hill,
New York.

APPENDIX
Table 2: Comparison of scheduling software

ID Name Platform Availability Advantages Disadvantages Reference
1 DTCondor Windows Freeware GUI, little code,

monitoring, heterogeneous
cluster, knowledge of
HTCondor not needed

Optimised for
application at
University of
Liverpool

University
of
Liverpool
(2014)

2 HTCondor Linux,
Mac OS X,
Windows

Open
source

features of classic batch
system, flexible resource
management, heterogeneous
cluster, versatility,
full documentation and
source code

no GUI,
monitoring by
external software

Center for
High
Throughput
Computing
(2014)

3 Job
Scheduler

Linux,
Windows,
Cloud

Open
source

German documentation,
web GUI (XML) or console,
backup-Cluster,
API-Interface to Java, Perl,
VBScript

Requirements:
MySQL database and
http Server,
complex user guide

SOS GmbH
(2014)

4 JPPF Java-
Environ-
ment

Open
source

Secure network,
prepared for the use of cloud,
sophisticated management
and monitoring, FTP,
no additional configuration

Peculiar API,
no details about
license and
complexity

JPPF
(2014)

5 Oddjob Linux,
Windows

Open
source

Visual configuration,
monitoring and control of
jobs over network, XML,
configuration files,
full documentation

Requirements: Java
and database

Gordon
(2013)

6 Open Grid
Scheduler

Linux,
Mac OS X,
Windows

Open
source

Console, easy monitoring,
API-Interface to C/C++,
Java, Perl, Python

Complex user guide,
little documentation,
compilation of source
code, no GUI

Grid
Engine
(2014)

10

	Simultaneous Optimisation: Strategies for using Parallelization Efficently
	Abstract

	1 Introduction
	2 Parallelization of Engineering Processes
	3 Parallelization Methods in Optimisation
	3.1 Parallelization in Optimisation
	3.2 Simultaneous Optimisation and Concurrent Optimisation
	3.3 Cluster Computing
	3.4 HTCondor

	4 Case Study
	5 Conlcusion and Outlook
	References
	Appendix

