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Abstract 

Although insights uncovered by design cognition are often utilized to develop the methods used by 
human designers, using such insights to inform computational methodologies also has the potential to 
improve the performance of design algorithms. This paper uses insights from research on design 
cognition and design teams to inform a better simulated annealing search algorithm. Simulated 
annealing has already been established as a model of individual problem solving. This paper 
introduces the Heterogeneous Simulated Annealing Team (HSAT) algorithm, a multi-agent simulated 
annealing algorithm. Each agent controls an adaptive annealing schedule, allowing the team develop 
heterogeneous search strategies. Such diversity is a natural part of engineering design, and boosts 
performance in other multi-agent algorithms. Further, interaction between agents in HSAT is 
structured to mimic interaction between members of a design team. Performance is compared to 
several other simulated annealing algorithms, a random search algorithm, and a gradient-based 
algorithm. Compared to other algorithms, the team-based HSAT algorithm returns better average 
results with lower variance. 
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1 INTRODUCTION 

Focused research has uncovered mechanisms of design cognition and revealed insights that can be 
used to inform the methods used by human designers (Finger and Dixon, 1989; Cross, 2004; Cagan et 
al., 2013). Using these principles of design cognition to inform computational methodologies has the 
potential to improve the performance of design algorithms. This paper draws on work that modeled the 
performance of individual problem-solvers via the simulated annealing (SA) algorithm (Cagan and 
Kotovsky, 1997). However, rather than use simulated annealing as a model of human problem-
solving, the current work explores the possibility of using insights from design research to offer 
improvements to existing optimization algorithms. Specifically, this work draws upon the behavior 
and composition of engineering design teams as a useful analog for suggesting improvements to the 
class of simulated annealing optimization algorithms. 
A number of studies have sought to draw connections between human designers and computational 
optimization and design tools. For instance, neural networks have been used in conjunction with 
genetic algorithms in an attempt to allow computers to consider stylistic aspects of design, much like 
human designers would (Tseng et al., 2012). Some agent-based design algorithms even attempt to 
approximate the differing design approaches and knowledge that are beneficial in human design teams 
(Campbell et al., 1999). In another example, insights from empirical studies of analogy use were used 
to design a computational system that was intended to assist human designers (Goel et al., 2012). 
Work by Egan et al. (2014) demonstrated the potential benefit of using computational agents to rapidly 
test and refine search strategies that can then be provided to human designers, closing the synergistic 
loop between computer and designer. 
This work centers around SA, a heuristic optimization algorithm that begins with stochastic 
exploration, and progressively transitions towards deterministic search (Kirkpatrick et al., 1983). 
Individual problem-solvers display a very similar transition, allowing SA to effectively model the 
human solving process (Cagan and Kotovsky, 1997). Therefore, SA methodology is a rational starting 
point for the development of a team-inspired optimizing search algorithm. The SA algorithm is 
inspired by the physical annealing process, in which materials are heated and cooled in a controlled 
manner to minimize residual stresses. When the material is hot, the movement of atoms is random in 
nature; atoms may even move occasionally in a direction that increases potential energy. As the 
material is cooled, atomic movements become more deterministic, and atoms begin to move almost 
entirely in directions that decrease potential energy. In the analogous optimization algorithm, the goal 
is to minimize the value of the objective function, rather than potential energy. An initial solution is 
chosen at random, and a new solution is proposed in every subsequent iteration. If the new solution 
has a better objective function value than the previous solution, it is accepted. If not, the new solution 
may still be accepted with some probability. The probability of accepting a worse solution is typically 
decreased after every iteration, enabling the algorithm to progressively transition from initial 
stochastic search to final deterministic search.  
An important consideration in any SA algorithm is the annealing schedule. The annealing schedule 
dictates the simulated temperature, which in turn dictates the probability of accepting a worse solution. 
The temperature may also influence the generation of new solution candidates in some SA algorithms. 
The most rudimentary annealing schedules are monotonically decreasing functions of iteration 
number. Theoretically, the probability that the algorithm will find the global optimum approaches 
unity as the annealing schedule is stretched over an increasing number of iterations (Granville et al., 
1994). However, computational resources are finite, which makes the use of extremely long annealing 
schedules impractical. Therefore, the implementation of adaptive annealing schedules has been of 
particular interest to simulated annealing practitioners. For instance, a schedule proposed by Azizi and 
Zolfaghari (2004) follows a conventional geometric annealing schedule, but increases the temperature 
for every consecutive uphill move that is made. The intuition is that this will help the algorithm to 
escape local minima. This adaptive schedule was found to perform better than conventional annealing 
schedules on a job-scheduling task.  Triki et al. (2005) demonstrated that many common adaptive 
temperature schedules follow very similar forms, and identified a single term within the temperature 
update rule that differentiated between schedules. While other schedules defined this term using a 
function of objective function variance, or number of accepted solutions, Triki et al. (2005) proposed a 
new schedule that simply replaced the term with a constant. This schedule performed better than 
another adaptive schedule by Huang et al. (1986) on a variety of benchmarking tasks. Adaptive 
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schedules can be made even more responsive to the problem space by implementing re-annealing 
(boosting the temperature rapidly when a local minimum has been found) and quenching (quickly 
decreasing the temperature when a local minimum is likely).  
A number of algorithms have been proposed that run several SA algorithms as parallel sub-routines, 
and combine solutions at regular intervals using computational genetic operators (Hiroyasu et al., 
2002; Ohlidal and Schwarz, 2004). More recent work has developed Multi-agent Simulated Annealing 
(MSA) algorithms, which employ software agents to operate on multiple solutions. Within this 
context, a software agent, usually referred to simply as an agent, is a computational sub-routine that 
operates on potential solutions with some degree of autonomy. The MSA algorithms utilize principles 
of differential evolution (Zhong et al., 2012a) and particle swarm optimization (Zhong et al., 2012b) to 
accomplish interaction between agents. However, the agents used in these algorithms do not possess 
any sort of individual strategy or preference for exploring solutions. The ownership of personal 
characteristics is a common factor in many agent-based algorithms (Franklin and Graesser, 1997). It 
can also lead to heterogeneity and diversity of agents, which has been demonstrated to improve 
performance in agent-based optimization models (Landry and Cagan, 2011). Creating diversity 
between agents in an SA-based algorithm may improve performance. 
Although a team is composed of individual problem-solvers, there is often additional benefit that is 
derived from interaction between the individuals (Wood et al., 2012). This arises from the ability of a 
team to initially diverge to explore a variety of options, but then converge, focusing the attention of 
the team members on a shrinking set of alternatives (Fu et al., 2010). Even members of high-
performing teams tend to pursue slightly different solution concepts while solving well-defined 
problems (McComb et al., 2014), indicating that members of a team don’t always greedily pursue the 
solutions with highest quality. Therefore, though team members may factor design quality into 
decisions, they freely pursue designs that may currently display lower quality. Further, it is known that 
expert designers tend to use a mixture of depth- and breadth-first solution strategies (Ball and 
Ormerod, 1995). Therefore, in a design team it becomes important for designers to have the ability to 
asynchronously employ the search strategies that they individually deem best, leading to the 
emergence of heterogeneous strategies within a team.  
This work introduces the Heterogeneous Simulated Annealing Team (HSAT) algorithm. This 
algorithm provides each agent with an independently controlled, adaptive annealing schedule, 
allowing agents to develop heterogeneous search strategies. The potential benefit of heterogeneity has 
been demonstrated in other heuristic optimization algorithms, and can also be justified through 
analogical comparison to human design teams. Further, interaction between agents in HSAT is 
designed to mimic characteristics of interaction in human design teams. The HSAT algorithm is 
compared to a non-adaptive SA algorithm, an adaptive SA algorithm, a non-adaptive multi-agent SA 
algorithm, random search, and a gradient-based algorithm. Performance of these algorithms is 
compared on two benchmarking functions. 

2 SIMULATED ANNEALING ALGORITHMS 

The HSAT algorithm builds upon the conventional SA algorithm, which will be introduced first. Then, 
the HSAT algorithm will be explained in detail. 

2.1 Conventional Simulated Annealing Algorithm 

A conceptual flowchart of the conventional SA algorithm is provided in Figure 1. With the 
initialization of the algorithm, an initial solution candidate is generated (either at random or using a 
some sort of heuristic). The algorithm then iterates to improve the solution. Within each iteration, a 
new solution candidate is generated. It is then accepted or rejected according to its objective function 
value and the temperature of the annealing schedule. The temperature is then updated, and the 
algorithm continues to the next iteration if convergence criteria have not been met. 
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Figure 1. Generalized flowchart for conventional SA. 

In this work, initial solutions are selected uniformly at random within a continuous space that is 
defined by some upper and lower bounds. The values of the bounds are specific to the problem being 
solved. A new candidate solution, 	࢞ሬሬԦ௡௘௪, is created by drawing a solution at random from the Cauchy 
distribution and adding the resulting vector to the current solution, ࢞ሬሬԦ௜. This is accomplished by 
computing 

ሬሬԦ௡௘௪࢞ ൌ ሬሬԦ௜࢞ ൅ ௜ܶ tan൫uniformሺെ2/ߨ, ,2/ߨ  ሻ൯, (1)ܦ

where ௜ܶ is the current temperature. The function uniform draws a point at random from the 
continuous ܦ-dimensional space with an upper bound of 2/ߨ and a lower bound of െ	2/ߨ in each 
direction. The Cauchy distribution is preferable to the Gaussian distribution because it has thicker 
tails, and thus encourages more extensive search (Ingber, 1996). Once a new solution is generated, the 
objective function is evaluated. If the solution is better than the previous solution, is it accepted 
ሬሬԦ௜ାଵ࢞) ←  ሬሬԦ௡௘௪). If the new solution is not better than the previous solution, is it still accepted with࢞
some probability p, which is defined as  

݌ ൌ exp ቀ
௙ሺ࢞ሬሬԦ೙೐ೢሻି௙ሺ࢞ሬሬԦ೔ሻ

்೔
ቁ, (2) 

where ݂ሺ࢞ሬሬԦሻ is the objective function. If the new solution is not accepted, the previous solution is 
carried into the next iteration (࢞ሬሬԦ௜ାଵ ←  ሬሬԦ௜). Two annealing schedules are used in this work: the࢞
classical Cauchy schedule, and the adaptive schedule proposed by Triki et al. (2005). For the Cauchy 
schedule the temperature is updated as 

௜ܶାଵ ൌ
బ்

ଵାఋ಴⋅௜
 , (3)  

where ଴ܶ is the initial temperature, ݅ is the index of the current iteration, and ߜ௖ is a parameter that 
allows the schedule to be extended or compressed. The second schedule (referred to as the Triki 
schedule for the remainder of this paper) updates temperature as 

௜ܶାଵ ൌ ௜ܶ ൬1 െ
்೔⋅ఋ೅
ఙ೑ሺೣሻ
మ ൰, (4) 

where ்ߜ is a parameter that controls how quickly adaptation occurs, and ߪ௙ሺ௫ሻ
ଶ  is the variance of 

objective function value of the ݊ most recent accepted solutions. The variable ݊ will be referred to as 
the memory length. 

2.2 Heterogeneous Simulated Annealing Team Algorithm 

HSAT is a multi-agent simulated annealing algorithm that draws upon two aspects of human design 
teams. Every agent in the HSAT algorithm is given an independently adaptive annealing schedule, 
which allows the agent team to develop heterogeneous and asynchronous search strategies. This is 
similar to the judicious application of mixed search strategies that is demonstrated by expert human 
designers (Ball and Ormerod, 1995). Heterogeneity of agents has also been shown to be beneficial in 
other algorithms (Landry and Cagan, 2011). Interaction between agents in HSAT is implemented in a 
way that probabilistically encourages agents to pursue better designs, while allowing them to pursue 
worse designs. This enables agents within a team to pursue slightly different solutions, similar to high-
performing human teams studied by McComb et al. (2014). This method of interaction also results in a 
progressive transition from initial divergence (when agents are making stochastic decisions) to final 
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convergence (when agents are employing deterministic search). High final convergence (indicative of 
agreement on a solution) is correlated to final solution quality in human teams (Dong et al., 2004; Fu 
et al., 2010). A general flowchart is provided in Figure 2 to summarize the HSAT algorithm.  

 

Figure 2. Flowchart for the HSAT algorithm. 

When agents are instantiated, each is provided with a candidate solution that is selected uniformly at 
random. The objective function value of each solution is then shared between agents in the team.  
Using this information, each agent then selects one of the team’s current solutions to begin the 
iteration from. The objective function value for every agent’s current solution is shared through the 
vector ࡲሬሬԦ, 

ሬሬԦࡲ ൌ ൣ݂൫࢞ሬሬԦ௜
ଵ൯, ݂൫࢞ሬሬԦ௜

ଶ൯, … , ݂൫࢞ሬሬԦ௜
ே൯൧. (5) 

Note that subscripts indicate iteration number, while superscripts indicate different agents. A new 
vector ࢃሬሬሬሬԦ is then defined as the relative function value of each current solution compared against the 
worst current solution: 

ሬሬሬሬԦࢃ  ൌ െ	ࡲሬሬԦ ൅ maxሺࡲሬሬԦሻ. (6) 

This equation is only valid for minimization problems, and would need to be modified slightly for 
maximization. The remaining operations in the iteration are then handled by each agent independently. 
Each agent selects a starting solution with probability proportional to its relative objective function 
value, using the equation 

݆ ൌ mult ൬
ሬሬሬሬԦࢃ

∑ ௐ೔೔
൰, (7)  

where the function mult returns a draw from a multinomial distribution. This can be thought of as a 
roll of a loaded die. This procedure provides a means of approximating the interaction of human 
design teams. Agents in HSAT are probabilistically encouraged to pursue better solutions, but there is 
still some probability that they will explore worse solutions. The solution selected through this 

process, ࢞ሬሬԦ௜
௝, is then used by the agent to begin the next iteration. The equation for calculating the new 

solution candidate for agent ݇ then becomes: 
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ሬሬԦ௡௘௪௞࢞ ൌ ሬሬԦ௜࢞
௝ ൅ ௜ܶ

௞ tan൫uniformሺെ2/ߨ, ,2/ߨ  ሻ൯. (8)ܦ

In other words, the agent begins at the previous solution ࢞ሬሬԦ௜
௝, and then applies a Cauchy modification to 

it, similarly to the conventional SA algorithm. If the new solution candidate, ࢞ሬሬԦ௡௘௪௞ , is better than the 
agent’s previous solution, ࢞ሬሬԦ௜

௞, the solution candidate is accepted. If it is not better, the agent still 
accepts the solution with acceptance probability computed using Equation 2. Finally, the temperature 
is updated using the Triki annealing schedule (Equation 4). It should be noted that the temperature is 
updated independently by each agent, allowing agents to develop heterogeneous strategies.  

3 COMPARISON METHODOLOGY 

3.1 Compared Algorithms 

The algorithm presented in this work differs from the conventional simulated annealing algorithm in 
two ways: multiple independent agents, and interaction that is informed probabilistically by relative 
solution quality. Both of these features are observed in high performing human teams. In order to fully 
understand the impact of these features, HSAT is compared to three other SA-based algorithms as 
summarized in Table 1. 

Table 1. Summary of SA-based algorithms. 

 
Because SA algorithms progressively transition from stochastic to deterministic search, we use a 
purely stochastic algorithm (random search) and a purely deterministic algorithm (gradient-based) for 
comparison. The random search algorithm samples randomly within the bounds of the search space at 
each iteration and returns the best solution encountered. The gradient-based algorithm is the Broyden–
Fletcher–Goldfarb–Shanno interior-point algorithm. In the remainder of the paper, this algorithm will 
be referred to as the gradient algorithm. Rather than directly computing the Hessian, this algorithm 
estimates it using successive gradient information. A more detailed description of the gradient 
algorithm can be found in Papalambros & Wilde (2000).  
Every algorithm (both SA, and non-SA) is permitted 30,000 calls to the objective function. The 
gradient algorithm is restarted with a new, random location every time it converges on a local 
minimum, until the allotted number of function evaluations is reached. 

3.2 Benchmarking Functions 

Algorithm performance is assessed with respect to two continuous functions. These functions are the 
Ackley function (Bäck, 1996) and the Griewank function (Griewank, 1981). In this work the fully 
generalized versions of the functions are used, as shown in Equations 9 and 10. The variable ܦ 
indicates the number of dimensions in the search space. 

Ackley: ݂ሺ࢞ሬሬԦሻ ൌ 	െ20 exp ቆെ0.2ට
∑ ௫೔
ವ
೔సభ

஽
ቇ െ exp ൬

∑ ୡ୭ୱሺଶగ௫೔ሻ
ವ
೔సభ

஽
൰ ൅ 	20 ൅ expሺ1ሻ (9) 

Griewank: ݂ሺ࢞ሬሬԦሻ ൌ
ଵ

ସ଴଴଴
∑ ௜ݔ

ଶ஽
௜ୀଵ െ ∏ cos ቀ

௫೔
√௜
ቁ஽

௜ୀଵ ൅ 1 (10)  

Both the Ackley and Griewank functions have their global minimum of ݂ሺ࢞ሬሬԦ∗ሻ ൌ 0 at ࢞ሬሬԦ∗ ൌ
ሾ0, 0, 0, … , 0ሿ. For the numerical experiments conducted as part of this work, every equation was 
implemented with 30 dimensions. For both functions, every dimension was constrained so that െ10 ൑
௜ݔ ൑ 10. A 2-dimensional representation of each function is provided in Figure 3. 

 Classical annealing schedule (Cauchy) Adaptive annealing schedule (Triki) 

Single Agent 

Non-Adaptive SA: 
Single-agent simulated annealing 
algorithm using Cauchy annealing 

schedule 

Adaptive SA: 
Single-agent simulated annealing 
algorithm using Triki annealing 

schedule 

Multi-Agent 
Non-adaptive MSA: 

Interaction as in HSAT, but with a 
classical annealing schedule. 

HSAT: 
Multi-agent simulated annealing 

using a separate adaptive annealing 
schedule for each agent 
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(a) Ackley function. (b) Griewank function. 

Figure 3. Benchmarking functions. 

Both functions present distinct challenges. The Ackley function displays many local minima, but the 
global minimum lies within a shallow depression that is not accessible from most of the space unless 
the algorithm can cross numerous small ridges. Further, the global behaviour of the function 
(disregarding local minima) is non-convex. The Griewank function also displays many local minima, 
and many are close in objective function value to that of the global minimum (Cho et al., 2008). 
Relative to the Ackley function, the local minima in the Griewank function are fairly deep, further 
increasing complexity because the convexity of the quadratic component is obscured. Due to the 
multi-modal natures of the search spaces of these functions, it is unlikely that an algorithm will 
efficiently find the global minimum using only gradient information. 

3.3 Meta-Optimization of Parameters 

The SA-based algorithms compared in this work all differ significantly, either in terms of annealing 
schedule, number of agents, or both. Consequently, each algorithm has a unique set of parameters that 
control its execution, including aspects like annealing schedule and the generation of new solutions.  
Assuming that using the same parameter for every algorithm (for instance, initial temperature) would 
ensure good performance for all is naïve. In fact, it may be the case that parameter values that are near-
optimal for one algorithm may be detrimental to the performance of another. For this reason, a meta-
optimization was performance to select the best parameters for each SA-based algorithm. This 
procedure employed a pattern search to improve the average final solution value of each algorithm by 
incrementally tuning parameters. Since the average performance must be evaluated over a large 
number of runs, the basic pattern search algorithm was chosen to decrease computational cost. The 
parameters defining the annealing schedule were optimized for every algorithm, and for multi-agent 
algorithms the number of agents was also optimized. The initial step size of the pattern search 
algorithm was defined as 40% of the initial value of each parameter. If no improvement was found 
after modifying each parameter in turn, the step size was halved, and the procedure repeated. If no 
improvement was observed for 5 consecutive iterations, the algorithm terminated (after approximately 
20 total iterations). 

4 RESULTS AND DISCUSSION 

Table 2 summarizes the parameters resulting from the pattern search meta-optimization procedure. 
This procedure was applied to every SA-based algorithm independently on both of the benchmarking 
functions. 
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Table 2. Parameters used for SA-based algorithms 

Algorithm Function 
Number 

of Agents, 
ܰ 

Initial 
Temp., 

଴ܶ 

Cauchy 
Param., 
஼ߜ  

Triki 
Param., 

 ்ߜ 

Memory 
length, 
݊ 

Non-Adaptive 
SA 

Ackley 1 0.421 0.037 N/A N/A  
Griewank 1 0.428  0.026 N/A  N/A  

Adaptive SA 
Ackley 1 0.047 N/A  5.01×10-9 11 

Griewank 1  0.003 N/A  2.00×10-9  7  
Non-Adaptive 

MSA 
Ackley 5 0.900 0.321 N/A N/A  

Griewank  6 2.400   0.200 N/A  N/A  

HSAT 
Ackley 11 0.013 N/A  6.48×10-6 27 

Griewank  15 0.059  N/A  5.94×10-6  24  
 
Every function was solved 100 times using each of the algorithms. A cumulative distribution function 
was then constructed for the final solutions, as shown in Figures 4(a) and 4(c).  The cumulative 
distribution function shows the probability that a random variable (in this case, objective function 
value) will have a value equal to or less than a given value on the x-axis. The best solution returned by 
the algorithm was also tracked during optimization, as shown in Figures 4(b) and 4(d). Since 
algorithm parameters were tuned to improve performance for the given iteration limit, the average 
value of the best solution continues to improve throughout the allotted runtime (albeit slowly in some 
cases). Consequently, most algorithms achieve numerical convergence relatively late. 
 

(a) Ackley function, cumulative 
distribution of final solutions. 

(b) Ackley function, best solution over 
normalized run-time. 

  

(c) Griewank function, cumulative 
distribution of final solutions. 

(d) Griewank function, best solution over 
normalized run-time. 

Figure 4. Comparison of optimization results (error bars show ±1 S.E.). 
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For the Ackley function, all SA-based algorithms outperform the gradient-based algorithm and the 
random search algorithm. However, there is a significant amount of differentiation between SA-based 
algorithms. The team-inspired HSAT algorithm returns the best final result, by nearly an order of 
magnitude. The HSAT algorithm also provides the most consistent results, as evidenced by the error 
bars in Figure 4(b). An examination of Figure 4(a) reveals the nature of the higher consistency. The 
other three SA-based algorithms occasionally produce final solutions that are local minima with 
objective function values on the order of 1.0, but the HSAT algorithm is capable of avoiding the local 
minima of the Ackley function. The algorithms that utilize adaptive annealing schedules (HSAT and 
Adaptive SA) are able to obtain the lowest objective function values. However, the addition of 
multiple, collaborating agents in the HSAT algorithm is necessary to also avoid local minima, thus 
ensuring high average performance. Similar results for the Griewank function are shown in Figures 
4(c) and 4(d). In terms of mean performance, the HSAT algorithm out-performs all other algorithms 
(both SA and non-SA). In contrast to the results on the Ackley function, the highest-performing 
algorithms on the Griewank function are those that employ multiple agents. In approximately 80% of 
runs, the gradient-based algorithm performs only as well as random search. However, when a good 
initial starting location is chosen the For broader simple bounds, or for higher dimensionalities, the 
probability of randomly selecting a good starting point will decrease, making SA-based methods (and 
especially HSAT) more attractive. 
The results on these benchmarking functions allow us to gain insight into the effect of the two features 
implemented in HSAT (independently-controlled adaptive annealing schedules, and probabilistic 
agent interaction).  The Ackley function has numerous shallow local minima, but the global behaviour 
is readily apparent. The algorithms that employ adaptive annealing schedules (HSAT and adaptive 
SA) perform best, because they are capable of better responding to the global behaviour of the 
function. In contrast, the global behaviour of the Griewank function is obscured by the deep local 
minima. The algorithms that use multiple agents (HSAT and non-adaptive multi-agent SA) perform 
best, because they are capable of thoroughly searching a number of those local minima. Combining 
these features in HSAT ensures good performance on both functions. 

5  CONCLUSIONS 

This paper introduced the Heterogeneous Simulated Annealing Team (HSAT) algorithm, a multi-agent 
simulated annealing algorithm based upon two important properties that are also exhibited by human 
design teams. Every agent in the HSAT algorithm is given an independently adaptive annealing 
schedule, which allows the agent team to develop heterogeneous and asynchronous search strategies, 
resulting in behaviour similar to that of expert designers. Interaction between agents in HSAT is 
implemented in a way that probabilistically encourages agents to pursue better designs, while also 
allowing them to pursue worse designs. This mimics quality-informed interaction and allows for a 
pattern of divergence-to-convergence, both of which are observed in human teams.  
The performance of the team-based HSAT algorithm was compared to other SA-based algorithms, a 
random search algorithm, and a gradient-based algorithm on two continuous functions. On both of the 
functions utilized in this work, HSAT demonstrated the best mean performance. The reason for this 
performance advantage appeared to depend on the function. For the Ackley function, high 
performance was likely a result of the adaptive annealing schedule. The high performance on the 
Griewank function appeared to be a result of multi-agent collaboration. This indicates that HSAT is 
not only capable of delivering high performance, but that this performance may also be robust across a 
variety of function topographies. Future work will adapt HSAT to discrete domain problems, and 
explore its applicability for the automation of complex design problems.  
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