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Abstract 
This paper describes a study on the use of network topological robustness metrics to measure the 
functional robustness of complex engineered systems. The goal of the research is to identify network 
metrics capable of accounting for the functional robustness of a system without the need for a 
behavioral simulation. Three network topology metrics, average shortest path length, network 
diameter, and a robustness coefficient, were evaluated given their prominence in characterizing the 
topological robustness of networks but lack of evidence of their correlation to functional robustness in 
engineered systems. A bipartite ‘behavioral’ network of a drivetrain was modeled and simulated for 
failure using a model-based simulation package, Modelica, and a network attack approach. Average 
shortest path length and the robustness coefficient showed consistent topological disintegration, 
revealing the effect of a failure on system performance. Network diameter does not show topology 
changes when the failure is located outside of the cluster containing the failure. The research 
demonstrates the plausibility of certain network metrics to characterize the functional robustness of 
systems. 
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1 INTRODUCTION 

The study of failures in engineered systems is heavily focused on the reliability of individual 
components and on performance simulations conducted under variable input conditions so that an 
understanding of the system-wide effects of input variability could be gathered (Arvidsson and 
Gremyr, 2008). To avoid failures of important components, setting aside the problem of identifying 
these important components, the engineering design literature recommends techniques such as failure-
modes and effects analysis (FMEA) (Automotive Industry Action Group 2008) or a functional-failure 
identification and propagation (FFIP) analysis (Stone, Tumer and Wie, 2005; Kurtoglu and Tumer, 
2008). They are not without their limitations, though. FMEA requires significant expertise and a 
knowledge base of operational and historical systems and failures. While FFIP can identify fault 
propagation paths that cross disciplinary boundaries (Sierla et al., 2012), it cannot readily handle the 
interaction effects of failures. FFIP is also not effective for the identification of the most vulnerable 
components without significant historical knowledge of the system (Stone, Tumer and Stock, 2005) or 
the failure mode of each component (O’Halloran et al., 2014). 
Current methods for the failure analysis of complex engineered systems do not readily scale as the 
number of components and interactions increase because of the super-linear increase in compute time 
for behavioral analysis relative to the number of components. As the physical architectures of 
engineered systems progress from complicated to complex, their failure properties become 
increasingly dependent upon the pattern of connections between components. It is the pattern of 
connections, rather than the connections themselves, that have a significant effect on the behavior of 
the system (Newman, 2010). Therefore, understanding failure properties requires an understanding of 
both the constituent components and the patterns of connections between those components. 
In order to understand the behavior of systems, and in particular the relation between structure and 
fault behavior, researchers have modeled them as networks (Albert and Barabási, 2002), leading some 
to adopt the term complex engineered systems (Bloebaum and McGowan, 2010). In engineering 
design, researchers have applied social networks analysis and complex networks theory to analyze the 
statistical properties of very large scale design and engineering projects, and have shown that their 
network models have structural properties that are like those of other biological, social, and 
technological networks (Braha and Bar-Yam, 2007; Braha and Bar-Yam, 2004). Given this finding, 
the physical architecture of engineered systems have also been modelled and studied as networks 
(Sarkar et al., 2014; Sharman and Yassine, 2004; Sosa, Eppinger and Rowles, 2007). The objective is 
to minimize the number of defects (Sosa, Mihm and Browning, 2011) by re-architecting engineered 
systems and thereby create increasingly robust systems. Even if engineered systems such as aircraft 
carriers, jet engines, and nuclear power plants do not fully satisfy the definition of a complex system 
(Minai, Braha and Bar-Yam, 2006), methods from complex network theory have provided productive 
tools to evaluate the failure properties of complex engineered systems as a consequence of their 
structural configuration. For example, network radius measures, which had previously been used to 
determine the vulnerability of software architecture to virus propagation (Jamakovic et al., 2006), have 
been applied to understand the failure tolerance of engineered systems due to the propagation of a 
fault, such as the loss of flow or energy (Mehrpouyan et al., 2013). 
Despite a growing number of metrics to quantify the failure of networks by characterizing their 
topological disintegration (Piraveenan et al., 2013), two significant challenges exist in directly 
applying these metrics to engineered systems. First, one under-investigated assumption is the 
adequacy of topological disintegration as an indicator of performance degradation in engineered 
systems. Stated another way, if there were a 25% degradation in system performance, is there an 
equivalently granular change in (any of) the network metrics of topological disintegration? Is the 
correlation between performance degradation and topological disintegration linear, quadratic, or 
something else? It has been hypothesized that the degree of topological disintegration correlates with 
degree of system failure, but no study has examined this correlation or whether the metrics are suitably 
sensitive and appropriately granular in detecting performance failures except at the limit of the total 
loss of an edge or node. The total loss of a component would be exceptional and relatively rare for an 
engineered system, tantamount to losing, e.g., an engine of an airplane. For the complex network 
metrics to be useful to engineered system design, the value of the metric(s) should have congruence to 
the actual degradation in system performance. If they do, then they will become useful in 
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understanding the failure properties of the complex engineered systems without having to perform a 
full behavioral simulation. 
Second, while the behavior of an engineered system is dependent upon inter-connectivity between 
components, it is not sufficient to describe the behavior of the system in terms of physical topology 
alone. Generally, the behaviour and performance of engineered systems must be simulated with 
techniques such as a response surface method or model-based design simulations when many 
parameters change (Kim and Choi, 2008; Arvidsson and Gremyr, 2008). Analyzing the failure 
tolerance of engineered systems relying solely on physical and functional dependencies between 
components may inadvertently produce systems having underlying behavioral coupling between 
design variables, parameters, and performance, which make the systems vulnerable to failure. It is the 
interaction between design variables and parameters to performance across the physical architecture 
that actually determines the system behavior. 
In an effort to expand the application of complex network theory to the evaluation of engineered 
systems, this paper studies the relationship between three commonly used network metrics to quantify 
topological robustness and simulated system performance under a given degradation. In this paper, we 
investigate whether these metrics, average shortest path length, network diameter, and robustness 
coefficient, are appropriate for the characterization of failures. We limit the investigation to the 
characterization of the sensitivity of the metrics, that is, that they are sensitive to system performance 
degradation and that they neither over-magnify nor under-represent the extent of a failure. 

2 METHODOLOGY 

First, the methodology for the analysis of the suitability of network topology disintegration metrics to 
characterize the degradation in performance of an engineered system is presented. Accordingly, a 
discussion is presented of how to describe the behavior of an engineered system in a bipartite 
‘behavioral’ network. Then, the calculation of three network metrics are described, average shortest 
path length, network diameter, and robustness coefficient, to characterize the degree of topological 
disintegration. When network topology disintegrates due to an attack, that is, the removal of a node or 
edge from the network, changes in these metrics may describe the severity of the failure through the 
amount of topological change. The degree of topological change is tested for each of the three metrics. 
In a case study, the performance characteristics of a drivetrain system model operating nominally and 
failed are shown. The behavior of the drivetrain is broken down into a set of constituent equations, 
which are represented as a bipartite network. This network is then subjected to an attack to simulate a 
fault in a variable or parameter that could degrade the system performance. The same failure in the 
drivetrain model is then simulated to determine the effect on system performance. Finally, changes to 
these metrics are compared to simulated system performance using OpenModelica to determine 
whether changes in these metrics relate to degraded system performance.  
For the forthcoming analysis and discussion, we have utilized the following definitions: 
1. A Function is the transformation of a flow (Stone, Tumer and Wie, 2005). A Function can be 

mathematically represented as a relation between design parameters. 
2. Behavior is how a Function is achieved. For instance, system Behavior might be the rotation of a 

shaft to serve the Function of transferring rotational mechanical energy. 
3. Performance is the manifestation of Behavior. For instance, a shaft rotating at 100 revolutions per 

minute (RPM) is its Performance. 
4. A Failure is the degradation of Performance. For instance, a shaft rotating at 80 RPM is in a 

Failure state when it should be rotating at 100 RPM. 
5. A Robust system is one that is able to continue operating as intended given the presence of 

variations to internal or external operating conditions. This includes unexpected component 
failures and system-level effects. 

2.1 Bipartite Network Representation 
Network representations involving relationships between two distinct node types are represented with 
a bipartite network. In this paper, the bipartite ‘behavioral’ network represents the relations between 
Functions and Parameters (design variables and quantifiable noise factors) that influence the Function 
of each component given an engineering choice as to the manner by which the Functions will be 
achieved. The values of the Parameters determine the Performance of the system. 
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Figure 1. Bipartite network. Three sub-nodes within type-1 and four sub-nodes within type-2. 

(Left) Network Graph. (Right) Network Adjacency Matrix. 

A bipartite behavioral network is utilized instead of a physical architecture network because the 
physical architecture model does not contain sufficient information to characterize performance 
failures in complex engineered systems (Haley, Dong and Tumer, 2014). A physical architecture 
model lacks a formal (mathematical) description of the functions and the expected (nominal) 
performance of the system. It does not map the relation between function and design variables and 
parameters. An example of a bipartite network is displayed in Figure 1. The example has two node 
types with three sub-nodes within type one (Group 1) and four sub-nodes within type two (Group 2). 
Each node type can be referred to as a mode. The individual sub-nodes are then connected with edges 
across each mode. The following rules are applicable when using a bipartite network: 
1. No sub-node can be connected to any other sub-node from the same mode. 
2. A sub-node from one mode must be connected to at least one sub-node from the other mode. 
 In determining the bipartite adjacency matrix, a rectangular matrix is used with size N × M. 

N = Number of Sub Nodes in Type-1 (1) 

M = Number of Sub Nodes in Type-2 (2) 

 Bipartite networks may be represented with rectangular adjacency matrices. The matrices can be 
weighted or un-weighted. An adjacency matrix for the example bipartite network displayed in Figure 1 
(Left) has been provided in Figure 1 (Right). The adjacency matrix, A, is defined as follows: 

Aij =  �1 edge connection between sub node i and j
0 otherwise                             

 (3) 

For the weighted case, A is defined as follows: 

Aij =  �wij edge connection between sub node i and j
0 otherwise                             

 (4) 

Often it is necessary to represent a bipartite rectangular matrix as a block, (N + M) × (M + N), 
adjacency matrix. This way, all of the information required for the analysis is preserved, yet the math 
required to be performed is simplified for use on a ‘unipartite’ like network representation (Grassi, 
Stefani and Torriero, 2011). The following adjacency matrix, B, is represented as: 

𝐁𝐁 =  � 0 A
AT 0� (5) 

where A is the adjacency matrix from Eq. 3 and 𝐴𝐴𝑇𝑇 is the transpose of Eq. 3. B retains the correlation 
between both modes with A representing an existing correlation and a 0 showing a lack thereof. 

2.2 Metrics of Topological Disintegration 
Existing metrics for the topological robustness of networks generally assess the connectivity of the 
network after a node or edge has been removed. There are number of such metrics (see (Piraveenan et 
al., 2013) for a review). For this research, we utilize three metrics that are considered fundamental to 
the analysis of the connectivity of networks (Albert, Jeong and Barabási, 2000; Piraveenan et al., 
2013). 
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2.2.1 Average Shortest Path Length 
The average shortest path length, sometimes called average path length, is a measure of the topological 
connectedness of a network (Wilson, 1996). The average shortest path length is generally used to 
describe the relative efficiency for a flow to travel throughout a network. In this context, the average 
shortest path length is a measure of topological disintegration. The average shortest path length will 
always decrease when a node or edge is removed because nodes become isolated. Formally, when 
there is no path between nodes, the shortest path length is defined as infinity, but the calculation of the 
average shortest path length ignores disconnected nodes. Thus, the average shortest path length 
approaches 0. 
Consider the block network representation presented in the previous section (Eq. 5). Assuming B is a 
graph with a set of nodes, K, the shortest distance d between any two nodes is d(𝑘𝑘𝑖𝑖,𝑘𝑘𝑗𝑗), where 𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑗𝑗 
∈ K. The average shortest path length 𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴 is defined as: 

LASP =  1
(N+M)(N+M−1)

∑ d(ki, kj)i≠j  (6) 

where N is the number of nodes in mode 1 and M is the number of nodes in mode 2. Eq. 6 has been 
normalized with the size of the network in order to provide scale and comparability between networks 
of different sizes (Bounova and de Weck, 2012). 

2.2.2 Network Diameter 
Network diameter is defined as the longest shortest path between any two nodes within the network 
and is similar to average shortest path length in its calculation (Wilson, 1996). The network diameter 
is the classical measure of network tolerance to failure because the diameter characterizes the ability of 
two nodes to communicate with each other (Albert, Jeong and Barabási, 2000). While useful as a 
metric when a network is subject to repeated attacks on separate nodes, it may not carry much 
significance on single node or edge attacks, which is more plausible for engineered systems. In 
engineered systems, if multiple components fail within a relatively short time span, this would be 
considered a rare and catastrophic event. Geodesic distances may not change unless network wide 
effects are observable. We calculate this metric to compare its sensitivity relative to the average 
shortest path length metric. 

2.2.3 Robustness Coefficient 
The robustness coefficient is a measure of the topological robustness of a network to node or edge 
removal (attack) (Piraveenan et al., 2013). The calculation of the metric is based upon measuring the 
size of the largest connected component after an attack. A component is a set of nodes that are 
topologically connected; the size of the component is simply the number of nodes in the component. 
The largest component is also referred to as a giant cluster. When a node is removed, this may alter the 
size of the largest remaining component. When a network is correctly connected (all the nodes are 
connected to one another), the coefficient is defined as 100% because the size of the giant cluster is 
equal to the number of nodes. As the network disintegrates, the robustness coefficient reduces to 0%. 
Therefore, when evaluated over the total number of nodes, the metric approximates system 
connectedness when subject to attacks. Because the metric relies only on a count of nodes, it is 
computationally efficient, a useful feature as network diameter and radius-based metrics are 
computationally expensive (Aingworth et al., 1999). 
The robustness coefficient is valid for use on unipartite representations of networks. As this paper 
analyzes a complex engineered system with a bipartite network, an alteration must be performed for 
the metric to remain valid. The specific derivation of the metric is identical to the derivation for 
unipartite networks; however, the premise behind the metric must change slightly. The robustness 
coefficient is a ratio of the areas beneath two network disintegration profiles. 

R =  A1
A2

 (7) 

where 𝐴𝐴1 is the area beneath the profile of the target network and 𝐴𝐴2 is the area beneath the profile of 
an idealized network. Rather than evaluating the network for the size of the largest connected 
component, as has been done previously, the presented metric is evaluated with the average size of a 
component belonging to a specific mode. Average component size is commonly utilized in network 
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analysis for evaluating the general size of a network. This allows the idealized component size to 
decrease by unity with the removal of each node belonging to the other mode. The derivation 
continues similarly to the literature. Eq. 8 through Eq. 10 describes the calculation of the area beneath 
each profile. 

A1 = 1
2

(S0 + S1) + 1
2

(S1 + S2) + ⋯+ 1
2

(SN−1 + SN) (8) 

A1 = ∑ Sk −
1
2

S0N
k=0  (9) 

A2 = 1
2

N2 (10) 

Because a bipartite network is represented by an N × M adjacency matrix, the robustness coefficient is 
calculated with respect to the average size of one mode while the other is subjected to sustained 
failures. Either mode could be chosen for application. For the purpose of this paper, the performed 
analysis follows the equations as they are presented here. 
 The robustness coefficient, normalized to a 0-100 scale, is defined as the following: 

R = 200∑ Sk−100S0N
k=0

N2
 (11) 

where 𝑆𝑆𝑘𝑘 is the average size of the component in one mode after k nodes from the other mode have 
been removed. 𝑆𝑆𝑜𝑜 is the initial average size. N is the number of nodes in an N × M network. It can be 
verified that the equation has been normalized to result in 100% if the network is fully connected and 
0% if it is completely disconnected. 

3 CASE STUDY 

This section presents a case study of the failure of a drivetrain modelled with OpenModelica, a 
Modelica software platform. The model is used to show how failures related to the parameters that 
define system behavior and performance can impact network topology. Following the analysis will be 
a discussion of the relevant results and an evaluation of whether or not failures to engineered systems 
can be adequately modelled with a network at this level of topological granularity. 
For both the system and network evaluations, a torque degradation failure was implemented in the 
clutch. The failure is associated with a degradation of the coefficient of friction, mu, between rotating 
clutch disks. This results in reduced torque output to the rest of the drivetrain. 

3.1 The Drivetrain Model Simulation 

 
Figure 2. Drivetrain model constructed in OpenModelica (Tiller, 2001). 

The model depicted in Figure 2 depicts a drivetrain that accepts a constant torque and clutch state 
input (clutch engaged or disengaged). This torque is passed through a clutch, bearing, and two gearing 
manipulations under an inertial load. The equations governing model performance have been 
presented in Eq. 12-18. Table 1 provides the definitions for the parameters used in each equation. 
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F1: Clutchfric = mu ∗ cgeo ∗ Fn (12) 

F2: cgeo = N ∗ 1
2
∗ (ro + ri) (13) 

F3: Clutchout = TorqueIn − Clutchfric (14) 

F4: 0 = Clutchout + bearingout − tau − fricviscous (15) 

F5: fricviscous = 10−7 ∗ fo ∗ (nu ∗ RPM)
2
3 ∗ dm3 (16) 

F6: 0 = ratio1 ∗ bearingout + gear1out (17) 

F7: 0 = ratio2 ∗ gear1out + gear2out (18) 

 The equations represent the drivetrain’s fallible behavior. That is, changes in the values of the 
parameters may lead to incorrect performance of the drivetrain. This is true for each equation aside 
from Eq. 13. In this equation, a parameter defining the geometric properties of a clutch, cgeo, has been 
included. While not strictly behavioral information, this equation defines clutch properties that make a 
clutch subject to internal contact mechanism failures, such as clutch slipping. This is an important 
failure related to clutch performance not directly captured with typical network modelling techniques 
(O'Halloran et al., 2013). 

Table 1. Variable Value Definitions (Tiller, 2001; Harris and Kotzalas, 2007) 

Number Variable Related Component Definition 
1      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓 Clutch Amount of Torque from Friction 
2 mu Clutch Static Coefficient of Friction 
3 cgeo Clutch Geometric Constant for Clutch Surface 
4 Fn Clutch Normal Force Between Clutch Plates 
5 N Clutch Number of Frictional Surfaces 
6  𝑟𝑟𝑜𝑜 Clutch Outer Surface Diameter 
7  𝑟𝑟𝑖𝑖 Clutch Inner Surface Diameter 
8  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜 Clutch Torque Output from Clutch 
9  𝑇𝑇𝑇𝑇𝑟𝑟𝑇𝑇𝐶𝐶𝑇𝑇𝐼𝐼𝐼𝐼 Clutch Torque Input to Clutch 
10  𝐵𝐵𝑇𝑇𝐵𝐵𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 Bearing Torque Output from Bearing 
11 tau Bearing Bearing Torque Loss 
12  𝑓𝑓𝑟𝑟𝐵𝐵𝐶𝐶𝑣𝑣𝑖𝑖𝑣𝑣𝑓𝑓𝑜𝑜𝑜𝑜𝑣𝑣 Bearing Bearing Torque from Viscous Friction 
13  𝑓𝑓𝑜𝑜 Bearing Bearing Type Factor 
14 nu Bearing Kinematic Viscosity of Lubricant 
15 RPM Bearing Shaft Speed 
16 dm Bearing Bearing Diameter 
17 ratio1 Gear 1 Gear Ratio for Gear 1 
18  𝐵𝐵𝑇𝑇𝐵𝐵𝑟𝑟1𝑜𝑜𝑜𝑜𝑜𝑜 Gear 1 Torque Output from Gear 1 
19 ratio2 Gear 2 Gear Ratio for Gear 2 
20  𝐵𝐵𝑇𝑇𝐵𝐵𝑟𝑟2𝑜𝑜𝑜𝑜𝑜𝑜 Gear 2 Torque Output from Gear 2 

 
Research has been performed on how to model fault behaviors within engineered systems. Much of 
the work centers on the implementation of fault variables that degrade system performance (Joshi and 
Heimdahl, 2007; O'Halloran et al., 2013). For this analysis, the edges in the bipartite behavioral 
network were weighted with a value between 0 and 1: 1 if no failure exists within the parameter, 
between 0 and 1 if a degradation failure is present, and 0 if there is a complete failure. This scale 
ensured the applicability of each network metric. Thus, the edge weights could be thought of as a fault 
variable (FV). Eq. 19 displays the implementation of a fault variable in F1 for use in a traditional 
system model. The implementation process would be identical for each additional function. In a 
network, each fault variable, denoted FV1 through FVM (M is the number of mode 2 nodes), 
represents the failed state of the parameter for which it is associated, and is applied to an edge (Figure 
5). This allows for the alteration of topology according to the current state of each relationship. 

F1f: Clutchfric(FV1) = mu(FV2) ∗ cgeo(FV3) ∗ Fn(FV4) (19) 
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To simulate a failure in the torque transferability of a clutch, a fault variable, FV2, was applied. The 
model works by setting a clutch state input, disengaged, partially engaged, or fully engaged. For this 
simulation, the clutch was set to partially engage at 75% of an arbitrary set maximum value. 

 
Figure 3. Torque Simulation Results of a Drivetrain. Nominal (Blue). Slipping Clutch (Red). 

Figure 3 shows the output torque at each component under the condition of a slipping clutch. The 
failure is implemented within the torque transfer capability of the clutch. A slipping clutch occurs 
when the input torque from the engine is greater than the frictional torque resisting relative motion 
between clutch disks (O'Halloran et al., 2013). In this case, the clutch outputs less torque than the 
supplied engine torque but equal to the frictional resistance torque of the rotating clutch disks. In the 
event of a slipping clutch condition, there would be no relative motion between rotating disks, only a 
reduced torque output according to the severity of the failure. For this analysis, a fault variable value 
of 0.5 was implemented into Eq. 12 for FV2. The fault will be implemented into a bipartite network at 
the same magnitude. 

3.2 Modelling the Drivetrain and Failure with a Bipartite Network 
In the case of this drivetrain, the relationships defining system performance have been reproduced in 
Eq. 12-18 and were extracted from the system modelled in OpenModelica. Each equation is a function 
belonging in mode 1, F1 through F7. Each function’s constituent parameters belong in mode 2. 
Therefore, to construct the bipartite network for this drivetrain, there are 7 sub-nodes within mode 1 
(functions, N) and 20 sub-nodes within mode 2 (parameters, M). A connection between modes will 
occur if a mode 2 system parameter is present within a mode 1 function. To model a failure in the 
adjacency matrix, the edge weight in the adjacency matrix is changed. For example, if the static 
coefficient of friction drops due to wear, each existing edge associated with the failed node will have 
its edge weight modified to reflect the failure. For each network metric described in Section 2.2, two 
simulations were conducted, one for a nominal drivetrain and one for a slipping clutch.  
Figure 4 shows the results from the failure analysis. The value for each fault variable was set to FVi = 
0.5 and was failed independently of all other parameter nodes (i.e., only one node is in a failure state at 
a time). When the drivetrain clutch begins to slip due to a 50% loss in the clutch frictional coefficient, 
the average shortest path length decreases between approximately 0.001% and 9%, the network 
diameter between 0% and 8%, and the robustness coefficient by 2% to 5%. The results show that the 
network diameter is not always sensitive to a fault, and, therefore, is not suitable when the number of 
faults is low. The average shortest path length produced almost no discernible change for 16 nodes 
whereas the robustness coefficient produced discernible change for all nodes. What is interesting to 
note is that there are essentially three failure groups, that is, nodes for which failure produced the same 
decrease in the robustness coefficient. One group consists of variables 1, 3, 10, and 18, another group 
consists of nodes 2, 4-7, 9, 11, 17, and 19-20, and one group consists of variables 13-16. Identifying 
the designation of these variables in Table 1, these groups suggest that failure to the bearing has the 
most critical impact on system performance whereas frictional losses and geometric faults have a 
lower effect. In other simulations of power losses in gearboxes, it has been identified that the main 
amount of losses is caused by the bearings (Schlegel, Hösl and Diel, 2009). Thus, this relatively 
simple analysis of failure using a network topology approach accords with known performance issues 
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in vehicle drivetrains. For comparison, note that the physical architecture network of the drivetrain 
would show that each component is equally important in a failure scenario as they are connected in 
series; each node is connected to one other node. A loss of any node would result in a disintegration of 
the network. These results highlight the importance of the design variables and parameters associated 
with the bearings, and that it is these parameters rather than the component that influence failure. 

 
Figure 4. Topology metrics for drivetrain behavioral network failure simulation. 

ASPL=average shortest path length; RC=robustness coefficient 

4 CONCLUSION 

This paper presented a study of the relation between three metrics used for network topology 
evaluation and engineered system failure, which is characterized by performance degradation. Average 
shortest path length, network diameter, and robustness coefficient were evaluated on the behavioral 
network of a drivetrain model to determine whether the metrics change when system performance 
degrades. The values of the metrics under nominal and failed states of the drivetrain were compared to 
a simulation of system torque response. Two of the metrics, average shortest path length and the 
robustness coefficient, showed topological disintegration patterns that changed between nominal and 
failed cases. The network diameter is not sufficiently dependent on local topology to consistently 
show topology changes. Therefore, it lacks a clear relation to system failure. Between average shortest 
path length and the robustness coefficient, while a failure is shown in the evaluation of each metric, 
they are currently most useful in identifying failure origins rather than the impact of failure. With this 
information, topology can be optimized so that failures related to one parameter do not cripple a 
system. 
While the drivetrain model used in this paper is useful for explaining the approach and to show the 
correlation between network topology disintegration and system failure, in future work, a large scale 
system will be analyzed with a wide array of failure modes to determine if the approach is scalable. 
Additionally, research is required to map simulation results of complex engineered system models and 
network topology metrics to determine the relevant correlations and manifestations of system 
performance within network analysis tools. 
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