
ICED15

INTEGRATED FUNCTION MODELLING: COMPARING THE
IFM FRAMEWORK WITH SYSML
Eisenbart, Boris (1); Mandel, Constantin (2); Gericke, Kilian (2); Blessing, Lucienne (2)
1: University of Sydney, Australia; 2: University of Luxembourg, Luxembourg

Abstract
This paper presents a comparison between the Integrated Function Modelling framework and SysML
with the aim of deriving specific potentials for cross-fertilisation and further improvement regarding
their application for function modelling in interdisciplinary design. The presented comparison
comprises literature reviews as well as the practical application of both the IFM framework and
SysML for modelling the functionality of an exemplary mechatronic system. The research leads to the
identification of advantages and shortcomings in both approaches. Based on these insights, the paper
further presents a conceptual adaptation of the IFM framework with the intention to improve its
practical applicability and reducing modelling efforts.

Keywords: Functional modelling, Conceptual design, Integrated product development, Product
modelling

Contact:
Dr. Boris Eisenbart
University of Sydney
Discipline of International Business
Australia
boris.eisenbart@sydney.edu.au

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED15
27-30 JULY 2015, POLITECNICO DI MILANO, ITALY

Please cite this paper as:
 Surnames, Initials: Title of paper. In: Proceedings of the 20th International Conference on Engineering Design

(ICED15), Vol. nn: Title of Volume, Milan, Italy, 27.-30.07.2015

1

ICED15

1 INTRODUCTION

The development of multi-technology systems requires designers from various disciplines to
collaborate closely and establish a shared understanding of the problem and the emerging solution
alike (Kleinsmann and Valkenburg 2008). This entails clarification of the requirements, central
expected functions and their dependencies, as well as elaboration of different solution elements and
their implementation (Frankenberger et al. 1998). Function modelling contributes to the development
of a shared understanding in the design team as it addresses solution finding early in the process and
on an abstract level (Chakrabarti and Bligh 2001). In particular, the combination of function modelling
with (initial) modelling of a system’s structure is suggested to help with building this shared
understanding (Shai and Reich 2004, Eisenbart 2014). However, a large variety of alternative function
modelling approaches exist and are frequently incompatible as they address divergent contents and are
based on varying schemes for reasoning about functions and potential solution concepts (Erden et al.
2008, Eisenbart et al. 2012, 2013a, 2013b). While different scholars advocate establishing a shared
function model that is used in addition to models used within disciplines to address this issue, others –
including the authors of this paper – argue that providing an integrative model which aggregates
disciplinary function modelling is of greater benefit. An integrative model allows designers from
different disciplines and design contexts to relate between information relevant to them and others,
which is expected to contribute to the development of a holistic, shared understanding of a system’s
functionality. Two approaches that integrate particularly many relevant contents from function
modelling across disciplines and combine them with a representation of the system structure are the
Object Management Group Systems Modeling Language (OMG 2012, hereafter “SysML”) and the
recently proposed Integrated Function Modelling (IFM) framework (Eisenbart et al. 2013c). The
authors consider both amongst the most promising approaches for integrative function modelling and
they are therefore further investigated in this paper. They differ fundamentally in how information is
modelled: while SysML is a strongly formalised modelling language, the IFM framework is a flexible
approach for representing and visually linking information in a matrix format. The presented research
aims to compare both approaches and derive potentials for cross-fertilisation in order to combine their
respective strengths.
Sections 2 to 4 introduce both modelling approaches briefly and provide an initial comparison based
on a review of relevant literature. Section 5 illustrates the application of both approaches by modelling
an exemplary mechatronic system. The findings from literature review and practical application are
consolidated in Section 5 to derive specific potentials for cross-fertilisation. Based on these insights, a
conceptual adaptation of the IFM framework is proposed to improve its applicability (see Section 6).

2 THE INTEGRATED FUNCTION MODELLING FRAMEWORK

The IFM framework is intended to provide designers with an integrated, cross-disciplinary approach
for modelling system functionality. Following Eisenbart (2014), functions are defined as an intended
or already perceivable behaviour of a technical system intended to fulfil a task. In the IFM framework
integration is facilitated through linking the specific contents prominently addressed within discipline-
specific function models (i.e. in abstract behavioural modelling) and is further complemented with
initial system structural modelling. The IFM framework and its application are described in detail in
Eisenbart et al. (2013c, 2014) and Eisenbart (2014). It consists of associated views as illustrated in
Figure 1.

Figure 1. The IFM framework

Interaction
view

State view

ACTORS OPERANDS

Actor view

AC
TO

RS

Process flow
view

TI
M

E

PROCESSES

Effect
view

O
PE

RA
N

DS
U

SE
 C

AS
ES

PROCESSES

Use case
view

2

ICED15

A central view (process flow view) represents the flow of transformation and interaction processes,
which are central in function modelling irrespective of disciplines (Eisenbart et al. 2013a). The
remaining views are linked to this central view and comprise of matrices representing information
about the different entities in the framework and their interdependencies equivalent to Multi-Domain-
Matrices (MDM, see Kreimeyer and Lindemann 2011). Inherent entities centrally comprise of use
cases, transformation and interaction processes, effects, states, operands and actors. Use cases
represent different scenarios of applying the technical system for a specific purpose (e.g. fulfilling a
goal, changing the state of the system or user, etc.). Transformation processes describe technical
and/or human processes – realised by basic physiochemical effects – that result in a change of state of
operands or actors. Operands are specifications of energy, material and signals. Actors comprise
stakeholders (referring to any human or other animate being), technical (sub-)systems (which may be
hardware and/or software) and parts of the environment that are actively or passively contributing to
function fulfilment. Finally, interaction processes describe “cross-boundary” interactions between
different actors jointly contributing to function fulfilment (see also Eder and Hosnedl 2008). The
different views are briefly described in Table 1. Their adjacent placement (see Figure 1) supports their
parallel development and allows verification of their mutual consistency across the entire framework.
Furthermore, views are modular and may be added or omitted in order to allow for flexible adaptation
of the framework to the specific demands of practitioners (resulting from diverse working sequences
and rationales of different disciplines in different companies). This particular setup enables different
disciplines to work flexibly with the individual views in different kinds of design projects (i.e.
original, variant or adaptive design) and contribute to their iterative development during the solution
finding process.

Table 1. Associated views in the IFM framework
View Description

Process flow
view

…qualitatively visualises the flow of sequential or parallel (interaction and/or transformation) processes related to a specific
use case. For each use case an associated set of views is created. In the vertical direction, the process flow is visualised related
to time. This matches to the flow of states in the associated state view. In horizontal direction, the process blocks are spread
from left to right to enable a direct link to the actor view (see Figure 2).

State view
…represents the states from initial to final of operands and actors as well as their changes associated to the flow of individual
processes. It can also be indicated if an operand or actor merely support a process without changing their own state.

Actor view
…indicates the involvement of one or more actors in the realisation of individual processes related to a use case. Involvement
may be active or passive. Actors can be differentiated based on whether they – from the designers’ point of view – are part of
the system or not, which further separates transformation from interaction processes (realised “cross-boundary”).

Use case view
…indicates the involvement of individual processes in the different use cases. It is intended to support analysis of
dependencies between processes, which may hinder their parallel or sequential execution and thus the operability of use cases
in which they are involved.

Effect view
…represents the effects, which enable individual processes and are provided by actors. For each process block in the process
flow view, a separate effect view may be created, preferably using a similar representation. This allows for detailed analysis of
the basic physiochemical effects that are affecting or contributing to the individual processes.

Interaction
view

…uses a combination of matrices which map the specific bilateral impacts between actors and operands as well as their
complementary contributions (or any other kind of dependency between them) in the realisation of use cases, associated
processes etc. Additionally, information about the embodiment of specific bilateral impacts may be included. Hence, this
view essentially results in an initial system structure or interface matrix of the system, respectively.

Figure 2. Example of a process flow view (centre) for use case "prepare a cup of coffee" with adjacent
use case view (upwards), actor view (downwards) and state view (left), adapted from Eisenbart (2014)

Process 1 Process 2 Process 3 Process 4 Process 5 Process 6

ater (20°) coffee beans electrical energy
P1: Coffee is

ordered

P2 supporting p2 P2 P2: heat water
P3: grind coffee

beans
ater (100°) coffee powder heat

P4 P4
P4: mix water
and powder

fee (~100°) waste powder

P6
P5: fill drink in

cup
P6: dispose of

waste
coffee emptied heat

Process 1 Process 2 Process 3 Process 4 Process 5 Process 6

Ac
to

rs

X X X XO

O

O X X X

X

X X

X X

X X X

Use Case 3: Prepare hot
tea water

of espresso

final states

process

states

process

states

process

states

process

initial states

U
se

 C
as

es

Use Case 4: Automated
cleaning

Heating system

"Coffee" button

Operands

Grinder

3

ICED15

3 SYSML

SysML is intended to offer a consistent and formalised way for representing (basically any kind of)
information. The used formalism aims to improve clarity to the model users, thus – eventually –
supporting model comprehension and communication between designers irrespective of their
disciplinary background. Succeeding from UML, SysML is a so-called “visual modelling language”
(Friedenthal et al. 2006). As such, it is generic in terms of what can be represented with it; however, a
central set of models (typically referred to as “diagrams”) has been established over the years (see e.g.
Weilkiens 2008). These allow for detailed modelling and analysis of requirements as well as a
system’s structure and behaviour. Extensions to these diagrams are frequently discussed in literature to
allow customisation to specific demands of the designers. The analysis presented here focuses mainly
on the central diagrams proposed for abstract behavioural modelling (i.e. function modelling, as
indicated above), which are briefly described in Table 2 (see Weilkiens 2008, Friedenthal et al. 2006).
A variety of commercial and open-source software environments are available to support modelling
using SysML. Information about entities modelled in the different partial models (i.e. the different
diagrams) is typically stored in a meta-model serving as a database for the modelling process. While
individual diagrams are separated from each other, the entities they represent can be re-used from the
database. Hence, each diagram represents specific information, while they complementarily illustrate
all available information about the system. Entities need to be defined once using a block definition
diagram (see Table 2) to start with.

Table 2. Central diagrams for function modelling proposed by Weilkiens (2008)
Diagram Description

Block
definition
diagrams

…are used for definition purposes and modelling of relations between different entities. Any kind of entity may be modelled
using a new block. Each block can be equipped with attributes (i.e. physical properties), operations (i.e. technical processes or
activities), values, etc. These diagrams thus specify any relation between entities, including their mutual impacts and
dependencies. Typically, this concerns modelling a system under development, any surrounding human being (such as users,
referred to as “actors” in SysML) or peripheral technical systems. Each block can be further specified with a so-called
internal block diagram. These may be used to detail the connections and parts inside the system as well as their usage (see
e.g. Friedenthal et al. 2006).

Use case
diagrams

…represent the use cases a system is associated with as well as different users, peripheral technical systems and their
involvement within the use cases. Mutual connections among use cases (e.g. one use case including several others) may also
be represented.

Activity
diagrams

…represent the flow of processes performed by users, peripheral technical systems or the system to be developed (and/or its
components) during the execution of a use case. Activity diagrams include all sequential, parallel and alternative processes,
error scenarios, etc. to fully describe the devolution of a use case.

Sequence
diagrams

…represent the interactions between all users, peripheral technical systems and the system to be developed during the
devolution of a use case. Alternatively they can be used to represent individual, more complex processes, in detail. The
involved users and technical systems are represented by so-called “lifelines”. They exchange “messages” and interact with the
system as well as among each other. This essentially corresponds to a flow of operands (mostly information). Interactions are
modelled chronologically from top to bottom. Interactions may evoke subsequent processes to take place, which can be
modelled using an additional sequence diagram.

State machine
diagrams

…are associated to one specific block in an (internal) block diagram. They describe the entity’s states and their changes
during its life cycle. State changes are usually evoked by processes. These are referenced by a so-called “trigger” in the state
machine diagram.

Weilkiens (2008) proposes a sequence of modelling steps to be applied while generating the different
diagrams. For abstract behavioural modelling, central use cases in the system’s life-cycle and the main
involved actors are initially determined and represented in a use case diagram. The devolution of these
main use cases can be modelled in an activity diagram, which illustrates the sequence in which the
individual use cases may be executed in the different phases of the system’s life-cycle. Subsequently,
for each of these use cases, the specific sequence of required processes is modelled in a separate
activity diagram. In parallel, associated sequence diagrams may be generated to provide more detail.
Finally, modelling the process flows for each use case may be further substantiated with state machine
diagrams. Associated block diagrams can be used to represent the system’s structure. The different
diagrams are to be iteratively refined.

4 INITIAL COMPARISON

IFM framework and SysML are initially compared based on the descriptions and publications cited in
the previous sections, as well as insights from on-going research on the IFM framework by the authors
of this paper and existing research on SysML including – but not limited to – Peak et al. (2009), Bone

4

ICED15

and Cloutier (2010), and Pires et al. (2012). Here, the selected criteria for the comparison mainly focus
on conceptual differences between the approaches that affect the actual application (see Section 5).
To start with, differences were found regarding the addressed entities and their respective definitions.
Considering function modelling, a fairly similar set of entities compared to the IFM framework is
addressed in the standard diagrams proposed for SysML. The identified differences concern effects,
which are usually absent in the standard diagrams introduced earlier, and stakeholders. Stakeholders in
SysML involve external (groups of) human beings that have a general interest in the system under
development, without necessarily taking part in function fulfilment. In addition, while in the IFM
framework human beings explicitly can be part of the system under consideration (e.g. in a Product-
Service System), Weilkiens (2008) focuses on technical systems. Humans (e.g. users) are essentially
considered interacting elements of the environment. In the following discussions, the terminology
proposed for the IFM framework is used for both approaches to have a common basis.
Concerning the modelling, a central difference is the strong formalism in the diagrams and their
application in SysML in contrast to the large degree of freedom in applying the IFM framework.
Further aspects discussed in the following include the specific area of application, software tool
dependency, realisation of the linkage between different diagrams/views in the approaches, change
management, as well as model and work partitioning. The findings are collocated in Table 3.

Table 3. Initial comparison between SysML and IFM framework

SysML IFM framework
Area of application

• Can support the whole design process, starting with requirements
modelling over function modelling to structural (and
parametrical) modelling;

• Further provides links to typical system simulation tools used
during detail design (thus wider in scope as the IFM framework).

• Particularly focuses on modelling and analysing system
functionality consistently coupled with initial system structural
modelling (in the interaction view);

• May be coupled with – but does not include itself – requirements
modelling and early system simulation (see Dohr et al. 2014).

Software tool dependency
• In principle, diagrams may be created using any kind of graphic

modelling tool (e.g. MS PowerPoint, Visio, etc.); for complex
systems, use of an appropriate software tool is crucial: they
provide means to reuse entities from the meta-model in different
diagrams (as discussed in the previous section).

• Software tools can support SysML formalism to be maintained.

• Thus far, no software modelling tool for IFM framework existent;
modelling may be performed using spreadsheet tools like MS
Excel, while for less complex systems, matrices/views may be
sketched by hand;

• However, on-going research shows that implementation into a
software tool can be well performed (see Dohr et al. 2014).

Linkage between different diagrams/views
• Uses a meta-model as database storing all information about

entities and their relations (as described before), individual
diagrams are used to represent specific information graphically;

• Entities are allocated from meta-model into the diagrams, thus the
meta-model provides the (logical) linkage between model
elements represented in different diagrams.

• The IFM framework particularly emphasises direct visual linkage
of associated and adjacently placed views;

• Inherent matrices share header rows and header columns, in order
to facilitate traceability and linkage between contents of views
(foreseen to facilitate analysis of their mutual consistency and
ease gradual refinement/adaptation during the design process).

Change management
• (Provided, entities are correctly defined/allocated from the meta-

model into the diagrams) adaptations concerning same entities in
one diagram, are automatically advanced to others; yet, entirety of
caused effects (i.e. whether all affected entity relations will
remain consistent) hardly verifiable (especially, in case diagrams
partitioned to multiple designers/departments);

• Change automatism is provided by – and thus depends on – the
specific implementation in the used software tools.

• Effects of changes made to entities and their relations in
individual views can be directly visually traced by designers for
each set of views through verification of consistency of associated
rows/columns in adjacently placed views (see particularly
Eisenbart et al. 2014).

Model and work partitioning
• Possibilities to partition the information to be modelled by

different designers/departments with access right management
(i.e. managing who has the right to see and change which specific
information in the meta-model)

• Intended for collaborative modelling;
• Modelled information explicitly separated per use case, i.e. each

set of associated views focuses on one use case only.

5 MODELLING AN EXEMPLARY MECHATRONIC SYSTEM

In this section the initial comparison is advanced based on the analysis of two models of a mechatronic
system’s functionality and initial system structure as well as the experiences gained during their
generation by the authors. One model is based on the IFM framework, while the other is based on the
SysML formalism using the diagrams described in Table 2. The comparison focuses on the practical
applicability of both approaches (that result from the discussed conceptual differences), in order to
derive concrete potentials for cross-fertilisation and improvement, as the central aim of this research.

5

ICED15

5.1 Function modelling of a quadrocopter
The selected example is the AscTec Hummingbird, a self-stabilising, unpiloted aerial vehicle (a
quadrocopter) that can be controlled using a remote control or a computer. The Hummingbird is
considered suitable for the comparison as it provides diverse functionality, supports several use cases,
and combines various engineering technologies. Seven main use cases can be discerned: initiating the
quadrocopter, manipulating quadrocopter while flying, hovering, landing quadrocopter, replacing
components, charging battery, updating firmware.
Each of these use cases was initially modelled with SysML (using Eclipse/Papyrus). Modelling was
mainly performed by a bachelor student in his final year with a background in mechanical engineering
and mechatronics in collaboration with the remaining authors of this paper. Figure 3 exemplarily
shows a selection of diagrams for modelling the use case manipulating quadrocopter while flying in
SysML. It includes a few variant process flows in relation to the process of steering: the quadrocopter
can be remotely controlled by a person, by a computer, by waypoint navigation, with or without GPS
support. Variants in Figure 3 are represented as alternative paths in activity and sequence diagrams.

Figure 3. Examples of SysML diagrams for use case "manipulating quadrocopter while

flying"

<<system context>>
<<block>>

AsctecHummingbirdAutoPilotContext

<<actor part>>
:ExternalProcessingDevice

(computer)

<<actor part>>
: Environment

<<actor part>>
: User

<<actor part>>
: RemoteControl

<<part>>
: AscTecHummingbirdAutoPilot

ComputerCommunication

Inout ComputerComPort:
ComputerCommunication

In RCPort:
RemoteCommand

command

environmental effects

<<system process>>
Operating Quadrocopter

Landing Quadrocopter

Executing self-made algorithm
on Quadrocopter

Initiating Quadrocopter Hovering

Manipulating Quadrocopter
while flying

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Initiating Quadrocopter

Hovering Manipulating Quadrocopter
while flying

Executing self-made algorithm
on Quadrocopter

Landing Quadrocopter

<<system use case>>
Charging battery

<<system use case>>
Manipulating

Quadrocopter while flying

<<system use case>>
Hovering

<<system use case>>
Executing self-made

algorithm on Quadrocopter

<<system use case>>
Landing Quadrocopter

<<system use case>>
Replacing component

<<system use case>>
Initiating Quadrocopter

<<system use case>>
Updating firmware

Maintenance

Operating Quadrocopter

Environment

User

RemoteControl

ExternalProcessingDevice
(computer)

: User : RemoteControl
: ExternalProcessingDevice

(computer)
AscTecHumming

birdAutoPilot

sd: Manipulating Quadrocopter while flying

alt

[ManualMode]

[HeightControl
Wanted]

switch on height
control height control wanted

enable height control

switch on GPS mode
GPS mode wanted

enable height control

enable GPS mode

[GPSmode
Wanted]

[no further
command]

alt

[steering
command]

change flight state

[using RC]

change a steering
angle or throttle

steering command

[using
computer]

alt

alt

[waypoint
navigation]

activate waypoint navigation

define waypoints
send waypoints

fly following waypoints

define steering command

steering command

GPS mode has to
be activated for
waypoint
navigation

Change flight
state

[else]

Manipulating Quadrocopter while flying <<PreCondition>> Quadrocopter is switched on

Activate GPS mode

enable height control

Change a steering angle or
throttle via RC

Activate Waypoint
Navigation

Send waypoints

Change flight state

<<LocalPreCondition>>
GPS mode activated
[GPS mode has to be

activated]

[else] [GPS mode wanted]

[height control waned]

[no further command]

[steering command]

[using RC]

[using computer]

[waypoint-
navigation]

[simple command]

flight state changed

6

ICED15

Subsequently, the quadrocopter was modelled using the matrix-based concept of the IFM framework
(see Figure 4). Modelling was performed using MS Excel. As the IFM framework and SysML share
the concept of use case, these and central, inherent process steps are equal in the IFM framework and
the earlier modelled SysML diagrams. This circumstance, however, prevents a direct quantitative
comparison of the time needed for modelling with both approaches as use cases and central processes
were now already known. For modelling variant process flows for one particular use case, alternative
sets of associated views were generated for each alternative, using different process flow views. Seven
alternative sets of views were generated for the use case manipulating quadrocopter while flying.

Figure 4. Exemplary sets of views in IFM framework for use case "manipulating

quadrocopter while flying" (total amount of sets of views for this use case is seven, based
on alternative process flows)

ac
tiv

e
in

ac
tiv

e
w

ai
tin

g
fo

r
co

m
m

an
ds

re
ad

y
fo

r
co

m
m

an
ds

re
ad

y
fo

r
co

m
m

an
ds

ru
nn

in
g

su
rv

ei
lla

nc
e

m
od

e

w
an

ts
 to

 u
se

w

ay
po

in
t

na
vi

ga
tio

n
m

an
ua

l m
od

e
in

ac
tiv

e
el

ec
tr

ic
al

 a
nd

ro

ta
tio

na
l

"e
na

bl
e

G
PS

m

od
e"

P2
P2

su
pp

or
tin

g
P2

P2
P2

P2
: e

na
bl

e
GP

S
m

od
e

ac
tiv

at
ed

tr
an

si
tio

na
l

m
od

e
G

PS
 m

od
e

"e
na

bl
e

he
ig

ht

co
nt

ro
l"

P3
su

pp
or

tin
g

P3
P3

P3
: e

na
bl

e
he

ig
ht

 c
on

tr
ol

G
PS

 m
od

e
"w

ay
po

in
t

na
vi

ga
tio

n
w

an
te

d"

su
pp

or
tin

g
P4

P4
P4

P4
P4

: a
ct

iv
at

e
w

ay
po

in
t

na
vi

ga
tio

n

re
ad

y
to

 d
ef

in
e

w
ay

po
in

ts
re

ad
y

fo
r

w
ay

po
in

ts
"w

ay
po

in
ts

"

P5
su

pp
or

tin
g

P5
P5

P5
: d

ef
in

e
w

ay
po

in
ts

w
ai

tin
g

fo
r c

ha
ng

e
of

 fl
ig

ht
 st

at
e

"t
ra

ns
la

te
d

w
ay

po
in

ts
"

su
pp

or
tin

g
P6

P6
P6

su
pp

or
tin

g
P6

P6
P6

: p
ro

ce
ss

w

ay
po

in
ts

w
ay

po
in

ts

pr
oc

es
se

d
w

ay
po

in
ts

pr

oc
es

se
d

"w
ay

po
in

t
na

vi
ga

ito
n"

P7
P7

P7
P7

P7
su

pp
or

tin
g

P7
P7

su
pp

or
tin

g
P7

su
pp

or
tim

g
P7

su
pp

or
tin

g
P7

ac
tiv

e
su

pp
or

tin
g

w
ay

po
in

t
na

vi
ga

tio
n

pe
rf

or
m

in
g

w
ay

po
in

t
na

vi
ga

tio
n

re
ce

iv
in

g
an

d
se

nd
in

g
m

ot
or

co

m
m

an
ds

ad
ju

st
ed

 sp
ee

d
ad

ju
st

ed
 sp

ee
d

su
rv

ei
lla

nc
e

m
od

e

ob
se

rv
in

g
au

to
no

m
ou

s f
ly

in
g

Q
ua

dr
oc

op
te

r
G

PS
 m

od
e

w
ay

po
in

ts

pr
oc

es
se

d
el

ec
tr

ic
al

 a
nd

ro

ta
tio

na
l

"w
ay

po
in

t
na

vi
ga

tio
n"

AscTec
Humminbird
PoweBoard

GPS unit

AscTec
AutoPilot

X-BLDC
brushless

motor
controllers

Motors

Propellers

AscTec 3D-
MAG

User

Remote
Control

external
processing

device
(computer)

Energy

data/
control

commands

(X
)

X
X

X
X

(X
)

(X
)

X
X

As
cT

ec

Hu
m

m
in

bi
rd

(X
)

(X
)

(X
)

(X
)

X
X

X
G

PS
 u

ni
t

X
X

X
(X

)
X

X
X

X
As

cT
ec

 A
ut

oP
ilo

t

X
(X

)
X

(X
)

(X
)

(X
)

X
X

X-
BL

DC
 b

ru
sh

le
ss

m

ot
or

 c
on

tr
ol

le
rs

X
(X

)
(X

)
X

(X
)

(X
)

(X
)

X
X

M
ot

or
s

(X
)

(X
)

(X
)

(X
)

X
(X

)
(X

)
(X

)
X

(X
)

Pr
op

el
le

rs

(X
)

(X
)

(X
)

(X
)

(X
)

(X
)

(X
)

(X
)

X
As

cT
ec

 3
D-

M
AG

…
(X

)
(X

)
(X

)
U

se
r

(X
)

X
X

Re
m

ot
e

Co
nt

ro
l

(X
)

X
X

X
Ex

te
rn

al
 p

ro
ce

ss
in

g
de

vi
ce

 (c
om

pu
te

r)

X
X

X
(X

)
En

er
gy

X
X

(X
)

(X
)

(X
)

X
X

X
X

da
ta

/
co

nt
ro

l
co

m
m

an
ds

Ac
to

rs
O

pe
ra

nd
s

As
cT

ec
 H

um
m

in
gb

ird
 A

ut
oP

ilo
t s

ys
te

m

st
at

es
P1

in
iti

al
 st

at
es

pr
oc

es
s

st
at

es

pr
oc

es
s

In
iti

at
in

g
Q

ua
dr

oc
op

te
r

Ex
ec

ut
in

g
se

lf-
m

ad
e

U
se

 C
as

e:
 M

an
ip

ul
at

in
g

Q
ua

dr
oc

op
te

r w
hi

le
 fl

yi
ng

O

pr
oc

es
s

st
at

es

O

X O O
X

Process 1:
distributing energy

P1
: d

is
tr

ib
ut

in
g

en
er

gy

st
at

es

pr
oc

es
s

st
at

es

pr
oc

es
s

pr
oc

es
s

Sy
st

em
 b

or
de

r

O
X

(O
)

X
O

Ho
ve

rin
g

U
pd

at
in

g
fir

m
w

ar
e

Ch
an

gi
ng

 c
om

po
ne

nt

La
nd

in
g

Q
ua

dr
oc

op
te

r
Ch

ar
gi

ng
 b

at
te

ry

Op.

O
X

X

X

X
X

(X
)

O

X X

(X
) X

P7
: c

ha
ng

e
fli

gh
t

st
at

e

fin
al

 st
at

es

Process 2: enable
GPS mode

Process 3: enable
height control

Process 4: activate
waypoint

navigation

Process 5: define
waypoints

Process 7: change
flight state

Process 6: process
waypoints

(X
) X X

Actors

(X
)

X

[f
or

 fu
rt

he
r w

ay
po

in
ts

]

7

ICED15

5.2 Main observations
One particular aspect to be compared is the usability of both approaches for function modelling of the
quadrocopter. The comparison focuses on the training efforts, modelling efforts (not including gross
modelling time, as discussed before, thus mainly referring to the operations required for generating the
final (set of) models), the usability of the inherent formalism, adaptability of the approaches, model
readability and change management (i.e. revising the model, e.g. as new information is gained in the
process).
• Training efforts: The student mainly responsible for modelling had no prior experience with

SysML or the IFM framework. A considerable amount of time was required to learn and get
experienced with the SysML vocabulary and formalism before he could get started with
modelling the various diagrams in SysML.

• In contrast, the time required to get started with modelling in the IFM framework was
considerably shorter as no particular formalism had to be learned and as matrices are a well-
known means for representing information allowing modelling to start rather facilely.

• Modelling efforts: One aspect that continuously required attention while modelling in SysML
was the implementation and refinement of all formal definitions for the modelled entities, which
was not the case in the IFM framework. Another difference concerns modelling alternative
process flows (i.e. the variants mentioned earlier). In SysML, activity or sequence diagrams
allow modelling alternative process flows, error scenarios, etc. occurring within a use case into
the same diagram (see Figure 3).

• In the IFM framework, each set of views is associated to one particular process flow. Therefore,
each variant in a process flow needs to be modelled in a separate set of views. Although copying
and adapting already finalised spreadsheets in Excel was quite helpful, modelling efforts were
still extensive for use cases that included a large amount of alternative processes.

• Formalism: Creating a formally correct SysML model requires equipping a large amount of
model elements with appropriate formal types. Finding and creating the correct/suitable types
took a considerable amount of time and continuous reflection. Particularly the gradual refinement
and expansion of created diagrams with new entities was found to cause difficulties in this
respect.

• Modelling with the IFM framework does not involve such formalism. Thus, no such problems
were experienced.

• Adaptability: Adapting the originally proposed views or diagrams, respectively, was experienced
to be relatively easily possible in both approaches. In SysML this can be quickly performed by
creating new profiles and stereotypes to adapt and expand diagrams wherever needed.

• In the IFM framework, whenever needed, contents or forms (e.g. adding new sub-sections in
rows or columns) of individual views could also be quickly adapted to the needs of a specific
situation.

• Model readability: Several SysML diagrams quickly became rather complex and thus difficult
(and time consuming) to read even for the modellers (i.e. many interconnections, notes,
alternatives, etc. had to be represented). Further, the distribution of information across multiple
diagrams (which are not always clearly linked) created problems for any person not initially
involved in creating the respective diagrams. As can be expected, in these cases, the before-
mentioned efforts for adapting diagrams were also considerably larger for SysML compared to
the IFM framework.

• In comparison, a set of views in the IFM framework always refers to one specific use case, thus
representing all information describing this use case in one spreadsheet. However, maintaining a
holistic view of the entire system when modelling multiple use cases is hampered because
information is distributed over different spreadsheets. Also, modelling highly complex use cases
can result in rather large matrices quickly, which can be difficult to read on a computer screen.

• Change management: A general problem in modelling complex functionality in different views
or diagrams, respectively, is ensuring model consistency, i.e. orchestrating any introduced
adaptations to associated views/diagrams that will also be affected by a particular change. In
SysML this was found to be more difficult than expected. In some cases, the software tool would
indeed display warnings if changes in one diagram also affected others, which was very helpful.
However, in most cases (particularly if actors and their interactions with others were adapted), no

8

ICED15

such warnings were provided, thus, frequently yielding inconsistencies across diagrams. These
often went unnoticed until rather late in the modelling process.
In comparison, within a single set of views (i.e. for one particular use case) in the IFM
framework, adaptations made to one view could be rather easily orchestrated to all affected
adjacent views. However, if the changes affected views in other use cases as well, additional
efforts were required to verify their consistency and implement required adaptations.
Nevertheless, overall, experienced efforts for implementing adaptations were considerably lower
in the IFM framework.

5.3 Discussion
The insights from the literature review and the application of both approaches provided valuable
insights. In the following, these are critically evaluated and discussed.

5.3.1 SysML formalism may both hamper and support the modelling process
The strong formalism in SysML was a barrier in the beginning and required continuous efforts
throughout the entire modelling process. The initial learning efforts and required abstraction in SysML
has already been identified as one of the main barriers for its wide-spread use in interdisciplinary
design by other researchers (see e.g. Borches and Bonnema 2010). At the same time, the authors of
this paper found that the formalism provides a certain guidance: the formalism predetermines how the
different entities should be used, which occasionally was rather helpful in setting up the diagrams.
The IFM framework provides much more freedom, which was particularly beneficial for setting up
early models on paper, as these could be quickly adapted and refined. The formalism in SysML
prevents such quick adaptation. Eventually, both freedom and formalism thus have their benefits and
shortcomings. Whether this is perceived as one or the other depends on personal preferences of a
designer and on the context of the project. It may be beneficial to balance properly between formalism
and flexibility by adapting both approaches adequately.

5.3.2 Visual and formal linkage of information are beneficial in modelling
One of the strengths of the IFM framework is the direct visual linkage between matrices, which
proved particularly beneficial during adaptation of information within and across different views. A
remaining problem is the linkage of different sets of views for different use cases. This problem is
avoided to a certain extent in SysML through the use of the meta-model. Although some difficulties
occurred with this functionality during change management, it is in principle a useful feature. Here, a
large potential for cross-fertilisation exists. While SysML could certainly benefit from a clearer visual
connection of information across diagrams, the IFM framework could benefit from (somehow
formally) linking information across different sets of views. The latter suggests the need to develop an
adequate software tool to support such a feature.

5.3.3 Readability of views and diagrams needs improvement
For large SysML diagrams, it proved difficult to arrange all model elements adequately, especially if
many connection lines had to be drawn. In this respect, the matrix-based representation in the IFM
framework was perceived much more convenient during modelling. However, in case many different
entities are to be represented in the IFM framework, the matrices can become very large, making them
difficult to read as well. In these cases, also the direct visual linkage between the different matrices
(one of the main benefits of the IFM framework) is hampered. This suggests that in order to maintain
readability of the different views, it may be beneficial if specific contents could be flexibly highlighted
or blanked out in the views, respectively to allow focussing on specific parts only. This, again,
suggests implementation of the IFM framework into an adequate software tool.

5.3.4 Representing alternative process flows in the IFM framework needs improvement
The possibilities to represent alternative process flows and error scenarios in one activity diagram
proved to be beneficial in SysML. Even though the respective diagrams may subsequently become
rather complex, these possibilities decrease modelling efforts considerably in comparison to the IFM
framework. Variant sets of views in the IFM framework to represent all alternative process flows
sometimes only differed by very few process elements. The result is a large number of sets of views

9

ICED15

required for comprehensive modelling. This, eventually, increases modelling efforts hampers adapting
the views quickly if new information is gained.

5.4 Implications
The main insights from the presented comparison of the IFM framework and SysML are the
following:
• the IFM framework and SysML both should provide more support to ease readability of complex

views or diagrams, respectively;
• in SysML, visual linkage of information across diagrams should be enhanced, while the IFM

framework requires support in linking information across different sets of views;
• the IFM framework could benefit from adequate conceptual adaption to allow representing

alternative process flows, error scenarios, etc. for a use case in the same set of views.
As discussed before, in order to improve the applicability of the IFM framework, the first and second
issue may be addressed by developing an adequate software support. Development of such a software
support is part of on-going research. In particular, the issue of how to adequately compromise between
the formalism that is required in such tools and maintaining flexibility needs to be researched properly.
The most pressing issue, however, seems to be the insufficient support for modelling alternative
process flows for use cases. A solution to this issue is presented in the following section.

6 CONCEPTUAL ADAPTATION OF THE IFM FRAMEWORK

The idea behind the developed adaptation of the IFM framework was to integrate the possibilities
offered by activity diagrams in SysML for representing alternative process flows and error scenarios
into the IFM process flow view. The visual linkage between the represented elements across adjacently
placed views was to be maintained. Hence, in particular the horizontal spread of process blocks in the
process flow view was to be maintained in order to keep the direct linkage with use case and actor
views (see Figure 2). A particular difficulty arose from representing alternative successive state
changes in time in relation to alternative processes in the state view. The developed concept is
presented in the following. Only the process flow view and state view required adaptation.
The process flow view was expanded with common symbols used in a SysML activity diagram (see
Legend in Figure 5). Also the notation of so-called “guards” from SysML (i.e. textual statements in
square brackets, representing conditions for a particular path to be taken) is integrated. With the help
of these elements, alternative processes may easily be modelled next to each other (i.e. still spread
horizontally), while allowing their clear visual separation using the different “decision nodes”.
Alternative processes are equipped with the same process number but have different annotations (e.g.
P4, P4’ and P4’’or P4 and P4*, etc.). Simple termination scenarios (like e.g. “no further command” in
Figure 5) are modelled as outgoing flows of a decision node and end in a “final node”.

Figure 5. Adapted process flow view containing all alternative process flows for use case

"manipulating quadrocopter while flying"

P2: enable GPS
mode

P3: enable
height control

P4: activate
waypoint

navigation

P4': send
steering

command via
computer

P4'': send
steering

command via RC

P5: define
waypoints

P6: process
waypoints

P7: change flight
state

P1
: d

is
tr

ib
ut

in
g

en
er

gy

[GPS mode and height
control already enabled]

[else]

[no further command]

[waypoint navigation]

[else]

[steering via computer] [steering via RC]

Legend:

Initial node

Activity final node

Flow final node

Fork node – multiplies
input

Join node – joins input to
one output

Decision node – places
output depending on guard

Merge node – waits for
input, then places it onto
outgoing flow

Indicates transport of flow
from one place to another
in diagram, without lines

Indicates that associated
action triggers further
actions

10

ICED15

As can be expected, alternative processes may evoke alternative states (and state changes) in operands
and/or actors. If such alternative states and sequential changes occur, the respective column in the state
view is split into different sub-columns. Their representation parallel to the process flow view is
illustrated in Figure 6 exemplarily focusing on the user. In the given example, the processes P4, P4’
and P4’’ (see Figure 5) evoke three alternative sequences of states and their changes. These are
represented as three alternative sub-columns in the state view. Later in the process flow, the alternative
paths reunite triggering process P7 (see Figure 5). Therefore, the three corresponding sub-columns (for
P4, P4’ and P4’’) reunite as well (see Figure 6). The fourth sub-column corresponds to the abort
scenario after P3 (see Figure 5), which can be similarly modelled using a parallel column (see Figure
6).

Figure 6. Excerpt of state view indicating state changes corresponding to alternative

process flows

The adaptation of the framework was successfully applied while remodelling the quadrocopter and led
to a considerable reduction of the number of sets of views. The seven different sets of views required
to represent the use case “manipulating quadrocopter while flying” before were effectively reduced to
one single set of views. This directly results in a substantial reduction of modelling efforts and of the
before-mentioned difficulties with linking information across different sets of views; thus, it also
supports building a holistic view of a system’s functionality.

7 CONCLUSION

The central aim of the presented research has been the comparison of the IFM framework with SysML
in order to derive possibilities for cross-fertilisation and improvement of the IFM framework. Based
on both the literature review as well as the obtained insights from modelling the functionality of a
quadrocopter, it was derived that both SysML and the IFM framework have their specific advantages
and disadvantages. The main differences seem to originate from the strong formalism used in SysML,
in contrast to the emphasis on flexibility in the IFM framework. Three main potentials for improving
the IFM framework were derived. While two of them are currently being addressed in the
development of an adequate software tool implementing the framework, the third, i.e. the issue of
representing alternative process flows, required conceptual adaptation. The adaptation of the
framework proposed in this paper (i.e. the described expansion of the process flow view and the state
view) solves the identified shortcoming. It was successfully applied for modelling the example of the
quadrocopter. With the proposed concept it was possible to model alternative states provoked by the
execution of alternative processes, even for very complex process flows. The possibility to do so, in
this particular example, resulted in a considerable reduction of the required modelling efforts. It is
expected to provide designers with similar benefit in modelling other multi-technology systems. This
will be tested in future research. Such research will involve applying the adapted IFM framework for
modelling different kinds of complex technical systems in engineering practice to evaluate and
improve its applicability further.

AscTec 3D-MAG Remote Control

abort

has switched
to GPS mode

P4 P4' P4''

ready to define
waypoints

has sent
steering

has sent
steering

P5

waiting for
change of flight

observing has steered has steered
has switched
to GPS mode

P7

User

wants to manipulate Quadrocopter

supporting P2

11

ICED15

ACKNOWLEDGEMENT
The authors would like to thank the FNR Luxembourg and the Australian Research Council (project
DP130101065) for supporting the presented research and the work on this article. Further thanks go to
Prof Holger Voos and his research group at the University of Luxembourg for valuable discussions.

REFERENCES
AscTec (2014) User’s Manual to Asctec Hummingbird AutoPilot, available online at:

http://www.asctec.de/downloads/manuals/AscTec-Autopilot-Manual-v10.pdf (12 April 2014).
Bone, M. and Cloutier, R. (2010) The Current State of Model Based Systems Engineering. Results from the

OMG SysML Request for Information 2009, Proceedings of the 8th Conference on Systems Engineering
Research.

Borches, P. and Bonnema, G.M. (2010) System Evolution Barriers and How to Overcome Them!, Proceedings
of the 8th Conference on Systems Engineering Research.

Chakrabarti, A. and Bligh, T. P. (2001) A Scheme for Functional Reasoning in Conceptual Design, Design
Studies Vol. 22, No. 6, pp.493–517.

Dohr, F., Eisenbart, B., Huwig, C., Blessing, L. and Vielhaber, M. (2014) Software Support for the Consistent
Transition from Requirements to Functional Modeling to System Simulation, Proceedings of the 10th
NordDesign Conference.

Eder, W. and Hosnedl, S. (2008) Design Engineering: A Manual for Enhanced Creativity, CRC Press, Boca
Raton, London, New York.

Eisenbart, B. (2014) Supporting Interdisciplinary System Development Through Integrated Function Modelling,
Dissertation, University of Luxembourg, Luxembourg.

Eisenbart, B., Blessing, L.T.M. and Gericke, K. (2012) Functional Modelling Perspectives Across Disciplines. A
Literature Review, Proceedings of 12th International Design Conference – DESIGN.

Eisenbart, B., Gericke, K. and Blessing, L.T.M. (2013a) An Analysis of Functional Modell Approaches Across
Disciplines, AI EDAM, Vol. 27 No. 3, pp. 281–289.

Eisenbart, B., Gericke, K. and Blessing, L. (2013b) Adapting the IFM Framework to Functional Approaches
Across Disciplines, Proceedings of the 19th International Conference on Engineering Design – ICED.

Eisenbart, B., Qureshi, A.J., Gericke, K. and Blessing, L.T.M. (2013c) Integrating Different Functional
Modelling Perspectives, in Chakrabarti, A. and Prakash, R. (Eds.), Global Product Development,
ICoRD’13, Springer, London, pp. 85–97.

Eisenbart, B., Gericke, K. and Blessing, L. (2014) Application of the IFM Framework for Modelling and
Analysing System Functionality, Proceedings of the 13th International Design Conference – DESIGN.

Erden, M., Komoto, H., van Beek, T. J., D'Amelio, V., Echavarria, E. and Tomiyama, T. (2008) A Review of
Function Modelling: Approaches and Applications, AI EDAM, Vol. 22, pp.147–169.

Frankenberger, E., Birkhofer, H. and Badke-Schaub, P. (Eds.) (1998) “Designers: The Key to Successful Product
Development”, Springer-Verlag, London.

Friedenthal, S., Moore, A. and Steiner, R. (2006) OMG Systems Modeling Language (OMG SysMLTM)
Tutorial, INCOSE - International Symposium.

Kreimeyer, M. and Lindemann, U. (2011) Complexity Metrics in Engineering Design. Managing the Structure of
Design Processes, Springer, Berlin.

Kleinsmann, M. and Valkenburg, R.C. (2008) Barriers and Enablers for Creating Shared Understanding in Co-
design Projects, Design Studies, Vol. 29 No. 4, pp. 369–386.

OMG (2012) OMG Systems Modeling Language (OMG SysMLTM) Specification, available online at:
http://www.omg.org/spec/SysML/1.3 (12 April 2014).

Pahl, G., Beitz, W.F.J. and Grote, K.-H. (2007) Engineering Design: A Systematic Approach, Springer, Berlin,
Heidelberg, New York, Tokyo.

Peak, R., Paredis, C., McGinnis, L., Friedenthal, S., Burkhart, R. (2009) Integrating System Design with
Simulation and Analysis Using SysML, INCOSE Insight, Vol.12, No.4, pp. 40-44.

Pires, A., Duprat, S., Faure, T., Besseyre, C., Beringuier, J. and Rolland, J. (2012) Use of Modelling Methods
and Tools in an Industrial Embedded System Project. Works and Feedback, Proceedings of Embedded
Real Time Software and Systems – ERTS.

Shai, O. and Reich, Y. (2004) Infused Design. I. Theory, Research in Engineering Design, Vol. 15 No. 2, pp. 93–
107.

Weilkiens, T. (2008) Systems Engineering mit SysML: Modellierung, Analyse, Design, dpunkt.verlag,
Heidelberg.

(www1) http://example.system-modeling.com/ (15 March 2014).

12

	Integrated Function Modelling: Comparing the IFM Framework With SysML
	Abstract

	1 Introduction
	2 The Integrated Function Modelling Framework
	3 SysML
	4 Initial Comparison
	5 Modelling an Exemplary Mechatronic System
	5.1 Function modelling of a quadrocopter
	5.2 Main observations
	5.3 Discussion
	5.3.1 SysML formalism may both hamper and support the modelling process
	5.3.2 Visual and formal linkage of information are beneficial in modelling
	5.3.3 Readability of views and diagrams needs improvement
	5.3.4 Representing alternative process flows in the IFM framework needs improvement

	5.4 Implications

	6 Conceptual Adaptation of the IFM Framework
	7 Conclusion
	Acknowledgement
	References

