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Abstract 
Design for system changeability and reusability has been sought by engineers from several disciplines. 
It has lead to the emergence of numerous strategies and paradigms. Especially in conceptual design 
phase, when knowledge about requirements, design problem and system specifications is incomplete, 
the future for effective changeability is already at stake. 
This work presents knowledge related to changeability strategies as well as enablers, namely 
modularity, interfacability, changeability and reusability ontologies. It is illustrated by examples of 
manufacturing system design. The established formalism leads to a formal organization of the required 
functionalities for changeability management; the paper presents an intelligent design environment for 
changeability management. Its collaborative architecture is based on two concurrent and continuous 
processes: designing changeability and leveraging on it during the whole system (re)design lifecycle. 
Dedicated agents cooperate together, so they offer an intelligent and distributed design environment. 
As a result, designers are assisted to adopt a systemic design approach to analyse, design, evaluate and 
maintain changeability. 
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1 INTRODUCTION 

The evolution of large-scale complex systems over long lifetime has pushed designers to study 
changeability as a life-cycle system property (De Weck et al., 2011). Changeability can be defined as 
the degree to which a system is able to adapt to changing circumstances. As far as industrial systems 
are concerned, highly changing and fluctuating production contexts have lead manufacturing systems 
communities to follow the same path. The paradigm of Reconfigurable Manufacturing System (RMS) 
was defined in the 90's (Koren et al., 1999) as a manufacturing system whose structure is able to react 
and adapt to change by physically changing its components through adding, removing or modifying 
machine modules. Its focused flexibility on demand through re-configuration phases was distinguished 
from the Flexible Manufacturing System (FMS) paradigm, where generalized flexibility is built-in a 
priori (ElMaraghy, 2009).  
Beyond all the discussions about the different changeability types and enablers, changeability in 
design has rarely been treated in a systemic way for manufacturing systems. Indeed, manufacturing 
system design is often addressed under specific design sub-problems - resource requirements, resource 
layout, material flow, buffer capacity etc. (Chryssolouris, 2005) - themselves often surrounded by 
specific assumptions or restrictions. But before design sub-problem formulations, design projects have 
first to deal with high-level description requirements leading to solution principles for the whole 
system. This preliminary phase - called conceptual design - is characterized by incomplete and 
imprecise knowledge about system environment and specifications. However this phase is very 
challenging as it is during conceptual design that the impact of decisions is the highest (Wang et al., 
2002). Therefore changeability management should be studied during the preliminary design phase in 
order to take full advantage of it.  
This articles falls into systemic engineering design approach category in adopting an integrative 
holistic view of large-scale and complex systems. Our work aims at 1- formalizing and organizing 
knowledge for changeability management during system (re)design activities and 2- proposing an 
intelligent design environment to assist designers with changeability management - namely the 
architecture of a knowledge-based system - according to its defined functionalities. 
Section 2 introduces principles and knowledge for designing system changeability. Then, Section 3 
presents the architecture of an intelligent design environment for changeability management.  Its 
collaborative organization is justified, the interacting agents are described, and their functionalities and 
supporting knowledge are detailed.    

2 SUPPORTING KNOWLEDGE FOR SYSTEM CHANGEABILITY 

Designing a system which is able to cope with changing contexts and requirements, pre-requires 
formalizing and structuring knowledge about changeability strategies. Architectural characteristics and 
principles to make the system adaptable and changeable through new system configurations, variants 
or instances are reviewed. For the rest of the paper, we define domains of definition for studying 
system’s elements changeability. 

2.1 Architectural strategies for changeable systems  

2.1.1 Product variety strategies 
Variation and diversity of customer needs in product design has caused the emergence of variety 
management strategies (ElMaraghy et al., 2013). For product or system design, leveraging on 
commonalities has been crucial to survive economically in a context marked with change and variety. 
Architecture design strategies for reuse have been developed (e.g. product family, product platform, 
modularity and commonality in product architecture)  (Jiao et al., 2007) but also strategic processes 
for reuse as product line engineering or product family engineering. Considering a manufacturing 
system as a product with its varying production context requirements, product variety management 
principles are directly applicable to manufacturing systems.  
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2.1.2 Modularity as a change enabler 
Modularity is considered as a great enabler for reuse strategy among different disciplines. A modular 
architecture enables changeability by easily adding, substituting, and removing predefined modules. In 
system engineering, it is often considered as a major system property and even a prerequisite for 
changeability; in software engineering reusable and evolvable solutions are made possible with 
segmenting the code into objects and services. In product design engineering, modular and flexible 
product platform are very trendy. And in manufacturing engineering, modularity and interfaceability 
consist of the two main characteristics of a RMS. 

2.1.3 Modularity design principles 
In all of these disciplines, module design follows two main principles. First, in order to be inter-
changeable, intra-module cohesion should be high and inter-modules coupling should be low. Second, 
as modularity induces increasing development cost for standardizing interfaces, the degree of 
granularity has to be balanced between required system variants distinctiveness (i.e. modularity) and 
planned commonality (i.e integrability). In other words, designers have to differentiate between 
necessary flexible assets and integrated system structure. For that, levels of reusability and adaptability 
have to be defined. A formalization of these two principles will be presented as some required 
functionalities for a design environment presented in Section 3.  

2.2 System modules representation 

2.2.1 Physical and rationale domains 
System modules can cover multiple viewpoints. For instance, modules can be defined in the physical 
domain, from high level description (e.g. robot, transportation system, Automated Guided Vehicles-
AGV, jigs, machine profile) to detailed level (path trajectory, trolley dimensions, handling robot 
capabilities, conveyor speed, PLC program). But in reality, level distinctions are application-
dependent or domain-dependent. In any case, a physical module is always first defined according to 
the requirements it is related to. Describing a module according to the functionalities, the requirements 
or largely, the intention it answers is more meaningful than an operational or physical description. 
Design rationale approaches share the same motivation. Instead of only specifying assets by their 
operational specifications, design rationale intends to describe the intention behind the choices all 
along the design process. Especially for a changeability perspective, reusability is not only about 
physical modules capabilities (e.g. physical interchangeability) but also the range of requirements and 
functionalities the system can cope with. Therefore, we defined system modules in two domains: the 
physical domain and the rationale domain. 

2.2.2 Modules types: blocks and requirements 
Consistently with the systemic viewpoint of this paper, a representation formalism of conceptual 
designed elements needs to be understood and made available by multi-disciplinary designers. This 
representation formalism for design rationale has to be domain-independent. Domain-independent 
representation approaches to record and reuse design rationale have been reviewed by (Regli et al., 
2000). As an example of systemic design rationale for manufacturing system engineering, Cochran et 
al. (2001) have developed the Manufacturing System Design Decomposition (MSDD) based on the 
axiomatic design approach (Suh, 1998). It integrates relative design disciplines (i.e. information 
systems, manufacturing strategy, supply chain, human work system design, facility design process, 
equipment design and product design) and trace the manufacturing system design process in terms of 
relations between design objectives (i.e. Functional Requirements) and solutions (i.e. Design 
Parameters). In systems engineering approaches, requirement engineering and requirement 
management tools also aim to trace requirements as implicit design decisions. The modelling language 
SysML includes a requirement diagram and relationship formalisms between requirements and 
allocated blocks (Friendenthal et al., 2011). 
Falling into these approaches, we differentiate two module types: requirements in the rationale 
problem domain and structural blocks in the physical solution domain. A requirement is defined as a 
statement that specifies a need, a condition, capability that should be achieved in the system. A 
structural block is a modular unit of structure that physically defines the system.  
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2.2.3 Relationship formalism 
Structural modules and requirement modules are highly-related to each other. Analysing coupling in 
physical domain, in rationale domain but also between both domains is necessary. A new formalism 
for typing the different kind of relationship is presented in Figure 1. Requirements are represented in 
square and structural blocks in circles. It establishes relationship types between requirements (i.e. 
business, functional, non-functional, behavioural, interface or constraint type requirements) and 
realizing blocks (i.e. physical, logical, or hybrid type). Some are inspired from the SysML 
relationships formalism, but this one brings much more details about their meanings. First, a 
requirement can arise according two relationship scenarios: 1- it <refines> another requirement, it 
brings more details and updates the old requirement version; 2- it <derives> from a requirement (e.g. 
functional decomposition) or from a structural block, meaning that a technical choice has influenced 
its formulation. A structural block can relate to a requirement in three ways: 1- it <satisfies> a 
requirement, meaning that the requirement source has directly caused the existence of the block in the 
system; 2- it is <specified by> a requirement that acts as a specification, it constitutes instructions for 
the later development phase; 3- it <allocates> to a requirement, which means that the requirement has 
a dependency link as it influences, or concerns an existing block. Last, structural blocks can also have 
physical links as inheritance, composition or association. It can be used in rationally deriving 
associated requirement to the related blocks. An illustration of rationale and physical relationships 
between requirement modules and structural modules is given in Figure 2. 
 

 

Figure 1. Project elements relationships in rationale and physical domains 
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Figure 2. Illustration of relationships between requirements and structural blocks 
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This formalism is a preliminary work to enable future analysis of project consistence, dependencies, 
and thus later analysis of modularity in rationale domain. Design projects are often too complex for 
system engineers to even think about module possibilities for reuse, especially when knowledge has 
not been formalized or organized. Changeability and reuse in system architecture would be possible 
only if the designer is assisted with a supporting tool for changeability design and management. 
Therefore, the proposition extends the research area of Design Theory and Methodology (DMT) 
initiated by (ElMaraghy et al., 1989) to support intelligent systems; an intelligent design environment 
contribution with methodological principles kernel is presented to overcome the apparent complexity 
and guide designers through changeability design and management projects. 

3 ARCHITECTURE OF AN INTELLIGENT DESIGN ENVIRONMENT FOR 
CHANGEABILITY MANAGEMENT 

Organizing and formalizing expert knowledge into intelligent systems is essential for assisting 
designers to cope with complex and changeable problems. The intelligent design environment 
proposed in Figure 3 was meant to act like a design assistant; thus, designers keep a central role by 
interacting and initiating the different system functionalities. The architecture of the intelligent design 
environment is presented under a collaborative architecture viewpoint. It enables distributed design 
environments for the various actors. Each agent is represented with its main functionality and its 
supporting knowledge. 

3.1 A collaborative design environment  
Changeability management has to be viewed under two complementary viewpoints: design for 
changeability (i.e. creation of modules and corresponding interfaces) and leveraging on changeability 
capabilities (i.e. taking benefits of the developed and invested modules and interfaces). To establish 
changeability as a lifecycle system property, changeability management has to be concurrent and even 
collaborative with the design project of the system. As design is a distributed and asynchronous 
problem, the system is based on a collaborative architecture. The design environment in Figure 3 
entails these three concurrent processes, represented as three macro-agents (MA1, MA2, MA3) 
collaborating together. A second level of collaboration takes place between the agents within MA1 and 
MA2. Collaborative modules –or agents – work together to solve problems thanks to their 
communication skills and their own capabilities for solving problems (Shen et al., 2003). 

3.1.1 Blackboards architecture 
The collaborative design environment is organized as a blackboard architecture (Shen et al., 2003). 
The main blackboard is a data repository for information about system modularity and interfaceability 
capabilities. It is related to a second blackboard that includes knowledge about system architecture in 
rationale and physical domains. Surrounding them, knowledge sources (KSs), namely the three macro-
agents, are permitted to communicate and interact with them while they operate. This architecture is 
relevant for continuous design process and continuous analysis of system elements modularity and 
interfaceability.  

3.1.2 Artificial intelligence potential support 
Intensive research has been undertaken to apply artificial intelligence (AI) to design. Without focusing 
too much on this topic, we can list some supporting AI techniques that would fit into the proposed 
architecture in Figure 3. Communication protocols (e.g. the Knowledge Query and Management 
Language – KQML), negotiation protocols (e.g. the contract-net protocol), retrieval knowledge 
mechanisms for efficient blackboard storage management, semi-automation of problem-solving 
methods and inference mechanisms for knowledge-based systems (Studer et al., 1998) are some 
examples. In industrial domain, the increasing complexity of products to manufacture, and thus of 
manufacturing systems, has led to more and more applications of distributed intelligence artificial to 
decisions problems (Kouiss et al., 2002). Bakhtari and Bartsch-Spörl (1994) have identified AI 
technology potential functionalities for design requirements as negotiation assisting in conflict and 
version management, assessing design quality, support with relevant information, or help for 
innovation. 
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Figure 3. Architecture of the intelligent design environment for changeability management 

 

3.2 Design for changeability – MA1 
The first macro-agent (MA1) aims to support design for changeability. Changeability need analysis 
(A1a) first initiates the design process. As modularity interferes with platform interfaceability, module 
(A1b) and platform interface (A1c) design processes are tackled concurrently.  

3.2.1 Changeability need analysis (A1a) 
Before any changeability management process, changeability must be designed at the outset. A 
mindset that predicts design scenarios about plausible unfolding futures (Rhodes and Ross, 2009) is 
required to evaluate the range and type for the required changeability. To support forethought about 
changeability, a design environment has to support the specification of changeability requirements by 
associated ontologies. Classifying changeability requirements according to identification of change 
initiator and specification of the related changeability strategy would encourage designers to think in 
an anticipatory way. For that, two requirement stereotypes have been formalized: 
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Figure 4. Changeability strategies 

• Stereotype for changeability drivers. With this stereotype, the designer is encouraged to relate 
requirements to strategic change drivers. Changeability requirements can be anticipated by 
analysing the plausible change drivers. In manufacturing system design, change drivers can refer 
to product change (new product variant, new product family, new volumes), process change 
(manufacturing or logistic process), technology or standard change, environment change (new 
layout, new plant) or any strategic motivation for change.  

• Stereotype for changeability strategy. In order to deal with new functionality or new volume, 
Figure 4 illustrates different changeability strategies that can be implemented. We first 
differentiate system changeability strategies that absorb a new change without requiring a new 
implementation (i.e. built-in modules), from the ones that require to implement physical change 
(i.e. module changeability). Within built-in module strategies, we differentiate modules dedicated 
to specific functionalities, from the ones that entail several functionalities - type swiss army 
knife. Module changeability strategies are differentiated according to their time scale for change: 
flexibility as planned change type "plug and produce" (i.e. short-term convertibility) or 
reconfigurability as hypothetical future change for system convertibility or extensibility. 

 

 
Figure 5. Module and interface types according to changeability strategies  
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3.2.2 Modularity and platform design (A1b and A1c) 
Module changeability and platform interfaceability. The identified changeability strategies result in 
interface and module requirements for the system platform. Deciding between implementing dedicated 
modules (type “plug and play”) and abstracting module types depends on the considered time scale, 
the completeness of future knowledge, the changeability strategy, or investment strategies. The 
different identified scenarios for changeability strategies (Figure 4) are now considered under module 
and interface needs (Figure 5).  
• In case of no system change, modules dedicated to two functionalities will also require dedicated 

interfaces (e.g. a machine for drilling and a machine for turning).  
• In the short-term change-overability scenario, the dedicated modules will require an interface 

dedicated to the range of modules it can be plugged to (e.g. a machine tool with a tool holder for 
different size of tools).  

• Long-term changes call for abstraction of modules, as knowledge concerning the “shape” of the 
future module is incomplete and fuzzy. Therefore, interfaces are either dedicated to a module 
class – the interface being a constraint for the future module (e.g. machines shall communicate 
with Profibus standard) – or generic to a class of interfaces (e.g. platform requires a generic 
transportation functionality as input).  

 
Reuse Strategy. Investing in module or interface development is justified by their required level of 
changeability, but also by their level of reusability. In product design, a product family (or product 
line) is defined as a group of products that share the same platform, namely the same group of assets. 
The main interest of product platform for design is the reuse of common assets to new product variants 
of the same family. However, other works support reuse strategy for any expert knowledge with a 
mere modules repository or a Knowledge Based System (KBS). For instance, Chalé Gongora et al. 
(2015) have proposed a new reuse strategy called "system and subsystems catalogue of building 
blocks" in which reuse does not only take place with product family assets, but also with project 
assets. Figure 6 offers a classification of system elements according to their level of reusability; it 
roughly distinguishes the fixed system core platform from potentially changeable modules. 
• Fixed core platform: common core elements within any system variant of a system family. 
• Platform modules: modules that have to be instantiated (or parameterized) in any system variant. 
• Platform optional modules: available modules that can be used in any system variant without 

being common to all variants. 
• Project specific modules: specific to a custom solution, but pointed out as being reusable in any 

project. 
 
 

 
Figure 6. Classification of system elements according to their level of reusability  
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Module cohesion evaluation. To decide on an appropriate granularity level for modularity, intra-
module cohesion should be maximal and inter-modules coupling should be minimal.  For this purpose, 
tools to represent architectures and elements dependencies are necessary. Design structure matrix 
(DSM) is a tool that offers a representation of system dependencies between entities. Weights for 
different levels of dependencies can also be attributed. Multidomain matrix (MDM) is an extension of 
DSM modelling where elements dependencies are visualized simultaneously in different domain. 
Eppinger and Browning (2012) present various applications of DSM and MDM in three big domains: 
product, process and organization domains. We recall from Section 2 that modules can either be 
rationale requirements, or physical structural elements. Therefore modularity and interfaceability 
analysis should be carried out in the rationale and the physical domains. For this purpose, an MDM 
(Figure 7) is used to analyse system element interactions in rationale and physical domains. 
Knowledge to represent these interactions can come from two sources: from design project 
relationships as it has been presented in Figure 2, but also from expert knowledge about interaction 
likelihoods.   
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Figure 7. MDM for rationale and physical domains 

3.3 Leveraging on changeability – MA2 
The role of the second macro-agent (MA2) is to leverage on the existing system changeability 
capabilities. Knowledge bases with available interfaces and modules come from the central 
blackboard. They result of the changeability design process (MA1). Similarity between system 
requirements and potential reuse possibilities should be analysed and evaluated (A2a). Concurrently, 
reuse of existing modules and interfaces should also be studied under the change propagation 
consequences within the whole system architecture (A2b). MDM representation would also support 
this change propagation analysis. 
 
Similarity analysis. Based on the classification of system modules in Figure 6, analysis of similarity 
shall follow the algorithm in Table1. Four types of actions (in bold) depend on the similarity of system 
requirements with existing system elements. From the less costly to the most costly scenario: 1-
implement a platform module, 2-instantiate a module from the platform module class, 3-design a 
module class according fixed core platform constraints, 4-instantiate a module from the project 
module class. We focused on module reusability, but it should also induce decisions on interfaces 
reusability (c.f. Figure 5). Let us note that the similarity metric should be specific to the application. 

Table 1. Similarity analysis algorithm 

Input 1: system requirement 
Input 2: fixed core platform; platform modules; platform optional modules; project modules 
Output: design decision for maximizing reusability 

If system requirement and fixed core platform are consistent 
If system requirement is enough similar to at least one platform module 

If one of the platform module is already instantiated Then implement platform module 
Else instantiate a module from the platform module class 

Else design a module class according fixed core platform constraints 
Else If system requirement is enough similar to at least one project module 
 Then instantiate a module from the project module class 
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4 CONCLUSION 

The presented intelligent design environment enables changeability design from the outset. Designers 
are assisted by a collaborative design environment that integrates the different design viewpoints they 
have to go through. Its collaborative architecture highlights three concurrent processes; the underlying 
belief is that system architecture design process has to continuously collaborate with design for 
changeability (i.e. modularity and platform design) and with leveraging on changeability processes. 
Required knowledge for changeability (e.g. elements reusability levels, modularity and interfaceability 
strategies, changeability strategies and similarity analysis for leveraging on changeability) has been 
formalized and integrated to support the different system functionalities.  
However, besides a contribution on integrating changeability principles within a unified framework, 
system changeability is for the first time not only seen under a physical viewpoint. System modules 
are defined in the rationale domain as requirements and in the physical domain as structural blocks.  
Moreover, high potential for integrating AI approaches is offered by this paper. Semi-automation of 
knowledge retrieval for cohesion analysis, modularity or interfaceability design becomes possible. 
Application of negotiation mechanisms would also enhance collaboration support between the 
different stakeholders and designers. Finally, expanding knowledge bases with expert ontology from 
specific domain needs would greatly increase the applicability potential of this design environment.   
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