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Abstract 
In many decisions, one of the available alternatives is to gather more information about the situation at 
hand, which incurs a cost but leads to a more informed and thus improved decision. Thus, the decision 
problem is two-fold: first, whether or not to gather additional information, and second, which course 
of action or design to select based on the available information as a result of the first decision. Such 
problems are Value of Information problems, which seek to quantify the value of the potential 
information to guide the decision maker on whether or not it is worthwhile. 
However, approaches to Value of Information problems typically implicitly assume that the decision 
maker is risk neutral, in the formulation of the problem. This paper considers how the inclusion of risk 
attitude affects a decision maker's decision about whether or not additional information is worthwhile. 
This leads to a more accurate model of decision problems typically facing decision makers. It 
discusses some of the mathematical complexities and illustrates the problem with an engineering 
example. 
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1 INTRODUCTION 

As society pursues more and more complex projects, it becomes more and more important to ensure 
that project resources are spent efficiently. Although much research has investigated decisions about 
designed artefacts or systems, relatively little study has been devoted to decisions about the design 
process itself. Of particular interest to designers are process decisions about whether to gather more 
information about an uncertainty in the design problem. This activity can reduce uncertainty and result 
in better-informed decisions about the design, but the costs and time required to gather this 
information are not necessarily worthwhile when one considers the benefits of doing so. The ability to 
model information gathering decisions more accurately can be critical for ensuring that limited design 
resources are well-spent. 
When an engineer is making a decision under uncertainty, one of the process alternatives that are 
typically available is to expend resources to reduce that uncertainty, in order to make a more informed 
decision about a design. Examples include building prototypes, making sophisticated computer 
simulations, and conducting clinical trials or flight testing. These alternatives only indirectly affect the 
design decision that engineers are making about the project artefact, but their importance increases as 
we continue to pursue projects of greater sophistication. 
The study of how additional information can affect a decision typically falls under the umbrella term 
of Value of Information (Howard 1966). The fundamental approach is to quantify the value of a 
quantity of information by comparing its benefits, in terms of the decision maker being able to make a 
more informed decision, with the cost of acquiring the information. 
Typically, in Value of Information approaches such as Expected Value of Perfect Information, the 
decision maker is assumed to be risk neutral when making decisions under uncertainty. Although this 
simplifies the analysis, engineers and other decision makers in a project can instead be risk averse or 
even risk prone; some empirical studies show that managers tend to be risk averse instead of risk 
neutral (Tull and Hawkins 1976). Modelling decisions under risk neutrality, rather than taking the risk 
attitude of the decision maker into account in formulating a decision, can lead to sub-optimal decisions 
because the decision model – and thus the model’s recommended optimal decision – does not 
accurately reflect the decision maker’s preferences. 
From a philosophical standpoint, both Value of Information and risk attitude are concerned with how 
the decision maker should act under uncertainty. Value of Information is concerned with quantifying 
how acquiring information can reduce uncertainty in the outcomes. On the other hand, risk attitude is 
concerned with how the decision maker prefers different outcomes in an uncertain situation. Both are 
relevant in a decision problem with uncertainty, and considering one without considering the other can 
lead to an incomplete understanding of the problem. 
The goal of this paper is to explore some of the issues involved when risk attitude is considered in a 
Value of Information engineering decision problem. The paper will demonstrate how considering risk 
attitude may lead to a different value of information, and therefore different optimal process and 
subsequent design decisions, compared with under a risk-neutral risk attitude. Thus, risk attitude 
should be considered when formulating the decision process in engineering problems involving the 
gathering of information. 
Section 2 discusses some of the literature that is relevant to this work. Section 3 investigates the 
mathematical formulation of a decision involving information from a decision analysis standpoint, and 
illustrates some of the difficulties involved when considering risk attitude. Section 4 uses an 
engineering example of a manufacturer deciding on the number of production and inspection machines 
in a TFT-LCD plant to demonstrate the effect of risk attitude on the optimal decision. Section 5 
discusses some of the issues involved when considering risk attitude with Value of Information and 
points to further topics of research. Section 6 concludes this paper. 

2 RELATED LITERATURE 

Using expected value to quantify the effects of information has been studied since the 1960s. 
Howard’s (1966) seminal work described the approach and gave some fundamental results. However, 
much of the literature has implicitly assumed risk neutrality. For example, Howard formulated the 
value of information as the difference between the expected profit as a result of clairvoyance about the 
outcomes and the expected profit without clairvoyance. As discussed in Section 3, this is only 
generally true under risk neutrality. Many other works use this same formulation to investigate issues 
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with value of information (Bradley and Agogino 1994, Mehrez and Stulman 1982, Eckermann et al. 
2010). 
More recently, the issue of incorporating risk attitude with Value of Information approaches has been 
recognized and studied. Mehrez (1985) gave bounds on the value of information for a risk-averse 
decision maker compared with a risk-neutral decision maker. Nadiminti et al (1996) considered the 
value of information based on various forms of payment in a risk-averse context. Eeckhoudt and 
Godfroid (2000) examined mathematically why higher risk aversion does not always lead to a higher 
value of information. Bickel (2008) investigated the relationship between perfect and imperfect 
information in a two-alternative problem when risk attitude is considered. Though they gave important 
insights on risk attitude and Value of Information, these works all considered a two-alternative 
decision problem, where the objective is to consider whether or not to gather information in a go/no-
go, accept/reject, invest/don’t invest etc. type of problem, rather than the more general problem given 
here, where there are a large number of possible alternatives. Additionally, this paper applies the 
analysis to a manufacturing context, which is a more sophisticated model of the design decision than is 
typically studied. 
For more general considerations of the Value of Information problem, Gould (1974) found that, 
contrary to intuition, an increase of the uncertainty in a decision maker’s prior beliefs do not 
necessarily entail an increase in the value of information, nor does an increase in the number of 
uncertain parameters. Hilton (1981) showed that increasing the number of alternatives available to the 
decision maker does not necessarily monotonically increase  the value of information. Miller (1975) 
showed that in a sequential decision, the value of gaining information about individual uncertain 
parameters tend to increase. Samson et al. (1989) showed that the value of information about 
independent sources of uncertainty is generally not additive, i.e. the value of information about one 
source of uncertainty and another source of uncertainty may be greater than, less than, or equal to the 
value of information about both sources together. Although these works do not deal specifically with 
risk attitude, they demonstrate some important considerations when formulating a problem involving 
the effects of information, in the context of the relationship between uncertainty and the value of 
information. 

3 MATHEMATICAL FORMULATION 

Howard (1966) described (perfect) value of information as “if a perfect clairvoyant appeared and 
offered to eliminate one [or more] of the uncertainties in the problem, we would be willing to offer 
him a financial consideration. The question is how large should this financial consideration be.”   The 
value of the information is tied to how much a decision maker would be willing to pay such that it 
increases his expected value over not acquiring the information. However, Howard then gave the 
mathematical form as the difference between the expected profit if the information were obtained and 
the expected profit if the information were not obtained. Mathematically, this is denoted as: 

EVI𝜃𝜃 = E𝜃𝜃 �max
𝑖𝑖
�E𝑦𝑦�𝑢𝑢�𝑥𝑥(𝑖𝑖),𝑦𝑦��𝜃𝜃��� − max

𝑖𝑖
�E𝑦𝑦�𝑢𝑢�𝑥𝑥(𝑖𝑖),𝑦𝑦��� (1) 

where EVI𝜃𝜃 is the Expected Value of Information 
    𝜃𝜃 is the information received from some source of information 
    𝑖𝑖 is an index of the set of possible design parameters 𝑥𝑥(𝑖𝑖), to delineate different possible sets 
    𝑥𝑥(𝑖𝑖) is the ith set of design parameters that can be chosen 
    𝑦𝑦 is the set of uncertain parameters 
    𝑢𝑢(∙) is a value or utility function expressing the decision maker’s preferences 
    𝐸𝐸𝑦𝑦[𝑔𝑔(𝑦𝑦)|𝜃𝜃] is the expected value of 𝑔𝑔(𝑦𝑦) taken over 𝑦𝑦 conditioned on 𝜃𝜃, that is, given that 
    information 𝜃𝜃 is known  
In Equation (1), for the first term, E𝑦𝑦�𝑢𝑢�𝑥𝑥(𝑖𝑖),𝑦𝑦��𝜃𝜃� is the expected profit given information 𝜃𝜃, with the 
expectation taken over the possible uncertain parameter 𝑦𝑦 values. Then, max

𝑖𝑖
{∙} is to maximize this 

expected value by varying design parameters, that is, across possible sets of design parameter values 
(indexed by 𝑖𝑖). Finally, E𝜃𝜃[∙] is to take the expectation across all possible values of information 𝜃𝜃 that 
may be received. Thus, the first term expresses mathematically the expected profit if the information 
were obtained. The second term expresses the current decision without gathering information, namely, 
finding the set of design parameters 𝑥𝑥(𝑖𝑖) that maximizes the expected value across the uncertain 𝑦𝑦. 
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For a decision maker using EVI to help make a decision, it is implied that if the actual cost of 
information is greater than this value, then the information should not be acquired, since it is not worth 
the expected benefit from being able to make a better (more informed) decision. Similarly, if the actual 
cost is less than this value, then the information should be acquired. Additionally, it is implied that 
after he makes this information decision, he then selects the 𝑖𝑖th set of design parameters that 
maximizes his expected value. 
This formulation is suitable when the decision maker is risk neutral. However, if the decision maker is 
either risk averse or risk prone, then this formulation does not suffice. A decision maker is risk averse 
if he prefers the expected consequence of a lottery to that lottery, and risk prone if he prefers a lottery 
to its expected consequence (Keeney and Raiffa 1993). Simply put, in an uncertain situation, a risk-
averse decision maker prefers to avoid the potential downsides of an alternative with uncertain 
outcomes, while a risk-prone decision maker prefers the potential upsides. 
To see why the above formulation is not suitable if a decision maker were not risk neutral, consider 
the actual goal of the decision maker. He is deciding between whether or not he should gather the 
information, based on whether it will increase his expected value. That is, he is selecting: 

Maximize �E𝜃𝜃 �max
𝑖𝑖
�E𝑦𝑦�𝑢𝑢�𝑥𝑥(𝑖𝑖),𝑦𝑦, 𝑐𝑐𝜃𝜃��𝜃𝜃���  , max

𝑖𝑖
�E𝑦𝑦�𝑢𝑢�𝑥𝑥(𝑖𝑖),𝑦𝑦��� � (2) 

where 𝑐𝑐𝜃𝜃 < 0 is the cost of that information. The decision maker should choose to gather the 
information only if: 

E𝜃𝜃 �max
𝑖𝑖
�E𝑦𝑦�𝑢𝑢�𝑥𝑥(𝑖𝑖),𝑦𝑦, 𝑐𝑐𝜃𝜃��𝜃𝜃��� − max

𝑖𝑖
�E𝑦𝑦�𝑢𝑢�𝑥𝑥(𝑖𝑖),𝑦𝑦��� > 0 (3) 

Note that this is in the same as Equation (1) except for the addition of the cost 𝑐𝑐𝜃𝜃 to the reward 
function 𝑢𝑢(∙), and the addition of “> 0” at the end. In this case, the cost of gathering the information is 
explicitly considered. Oftentimes, the cost of information 𝑐𝑐𝜃𝜃 is incurred separate from the outcome 
attributes 𝑓𝑓(𝑥𝑥(𝑖𝑖),𝑦𝑦), so this can be written as: 

E𝜃𝜃 �max
𝑖𝑖
�E𝑦𝑦�𝑢𝑢�𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦� + 𝑐𝑐𝜃𝜃��𝜃𝜃��� − max

𝑖𝑖
�E𝑦𝑦 �𝑢𝑢 �𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦���� > 0 (4) 

Now, if the decision maker were risk neutral, then: 

E𝜃𝜃 �max
𝑖𝑖
�E𝑦𝑦�𝑢𝑢�𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦� + 𝑐𝑐𝜃𝜃��𝜃𝜃��� = E𝜃𝜃 �max

𝑖𝑖
�E𝑦𝑦 �𝑢𝑢 �𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦�� + 𝑢𝑢(𝑐𝑐𝜃𝜃)�𝜃𝜃��� (5) 

                                                              = E𝜃𝜃 �max
𝑖𝑖
�E𝑦𝑦 �𝑢𝑢 �𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦�� �𝜃𝜃��� + 𝑢𝑢(𝑐𝑐𝜃𝜃)  

and therefore, the decision maker would only gather information if: 

E𝜃𝜃 �max
𝑖𝑖
�E𝑦𝑦 �𝑢𝑢 �𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦�� �𝜃𝜃��� + 𝑢𝑢(𝑐𝑐𝜃𝜃) − max

𝑖𝑖
�E𝑦𝑦 �𝑢𝑢 �𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦���� > 0 (6) 

→ E𝜃𝜃 �max
𝑖𝑖
�E𝑦𝑦 �𝑢𝑢 �𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦�� �𝜃𝜃��� − max

𝑖𝑖
�E𝑦𝑦 �𝑢𝑢 �𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦���� > −𝑢𝑢(𝑐𝑐𝜃𝜃)  

This is strategically equivalent to Equation (1), and thus Equation (1) is simply a reduction of this 
more general formulation in Equation (4) when risk neutrality is assumed. However, if the decision 
maker were not risk neutral, then in general the utility function 𝑢𝑢�𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦� + 𝑐𝑐𝜃𝜃� cannot be separated 
in this way. Rather, the cost of information must be considered explicitly as part of the problem; it 
cannot be separated and placed on the other side of the inequality. The value of information then is 𝑐𝑐𝜃𝜃 
where 𝑐𝑐𝜃𝜃 is such that Equation (4) is an equality rather than an inequality. 
Under some assumptions about risk attitude, simplifications can be made in calculating the value of 
information. For example, assume that the risk attitude follows constant absolute risk aversion 
(CARA). Then it can be written in the form (Keeney and Raiffa 1993): 

𝑢𝑢(𝑥𝑥)~ − 𝑒𝑒−𝑐𝑐𝑐𝑐 ↔ 𝑟𝑟(𝑥𝑥) ≡ 𝑐𝑐 > 0    (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟 𝑐𝑐𝑎𝑎𝑒𝑒𝑟𝑟𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐)  

            𝑢𝑢(𝑥𝑥)~𝑥𝑥 ↔ 𝑟𝑟(𝑥𝑥) ≡ 0            (𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟 𝑐𝑐𝑒𝑒𝑢𝑢𝑐𝑐𝑟𝑟𝑐𝑐𝑛𝑛𝑖𝑖𝑐𝑐𝑦𝑦) (7) 

      𝑢𝑢(𝑥𝑥)~𝑒𝑒−𝑐𝑐𝑐𝑐 ↔ 𝑟𝑟(𝑥𝑥) ≡ 𝑐𝑐 < 0    (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟 𝑝𝑝𝑟𝑟𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐)  
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where 𝑟𝑟(𝑥𝑥) is the local risk aversion at 𝑥𝑥 and 𝑐𝑐 is a given constant, the risk coefficient. In this case, 
because of the exponential nature of the utility function and the logarithm nature of the certainty 
equivalent, the inputs to the utility function can be separated when considering the values as certainty 
equivalents of the expected utility, as shown below for the continuous risk averse case: 

E𝜃𝜃 �max
𝑖𝑖
�E𝑦𝑦�𝑢𝑢�𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦� + 𝑐𝑐𝜃𝜃��𝜃𝜃���  

= ∫ �max
𝑖𝑖
�∫ [− exp�−𝑐𝑐𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦� − 𝑐𝑐𝑐𝑐𝜃𝜃�] 𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑦𝑦𝑦𝑦 �� 𝑝𝑝(𝜃𝜃)𝑑𝑑𝜃𝜃𝜃𝜃  (8) 

= ∫ �max
𝑖𝑖
�∫ [−exp �−𝑐𝑐𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦�� exp(−𝑐𝑐𝑐𝑐𝜃𝜃)] 𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑦𝑦𝑦𝑦 �� 𝑝𝑝(𝜃𝜃)𝑑𝑑𝜃𝜃𝜃𝜃   

= −exp (−𝑐𝑐𝑐𝑐𝜃𝜃)∫ �max
𝑖𝑖
�∫ �exp �−𝑐𝑐𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦��� 𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑦𝑦𝑦𝑦 �� 𝑝𝑝(𝜃𝜃)𝑑𝑑𝜃𝜃𝜃𝜃   

The certainty equivalent of this is: 

𝑢𝑢−1(− exp(−𝑐𝑐𝑐𝑐𝜃𝜃)) + 𝑢𝑢−1 �∫ �max
𝑖𝑖
�∫ −exp �−𝑐𝑐𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦�� 𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑦𝑦𝑦𝑦 �� 𝑝𝑝(𝜃𝜃)𝑑𝑑𝜃𝜃𝜃𝜃 � (9) 

= 𝑐𝑐𝜃𝜃 + 𝑢𝑢−1 �E𝜃𝜃 �max
𝑖𝑖
�E𝑦𝑦 �𝑢𝑢 �𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦�� �𝜃𝜃����  

Thus, when considering the problem in terms of certainty equivalents under a CARA risk attitude, the 
value of information is the certainty equivalent of deciding with the additional information minus the 
certainty equivalent of deciding without the additional information: 

𝑐𝑐𝜃𝜃 = 𝑢𝑢−1 �E𝜃𝜃 �max
𝑖𝑖
�E𝑦𝑦 �𝑢𝑢 �𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦�� �𝜃𝜃���� − 𝑢𝑢−1 �max

𝑖𝑖
�E𝑦𝑦 �𝑢𝑢 �𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑦𝑦����� (10) 

where 𝑢𝑢−1(∙) is the certainty equivalent for an expected utility, found via the inverse of the utility 
function. The importance of this is that from a practical standpoint, the certainty equivalents for the 
case of deciding with information and the case of deciding without information are substantially easier 
to calculate than the iterative procedure of finding 𝑐𝑐𝜃𝜃 such that it satisfies Equation (4) as an equality 
by varying the value of 𝑐𝑐𝜃𝜃. 

4 ENGINEERING EXAMPLE 

4.1 Problem Description 
This example is a highly simplified model meant to illustrate the concepts discussed in this paper and 
how they may be used on a practical engineering problem. 
An LCD manufacturer is planning the layout for a new Thin-Film Transistor (TFT) manufacturing 
plant. This plant produces substrates with the semi-transparent controller electronics that form part of 
every LCD panel. Each TFT substrate produced by the plant is then mated with a colour filter (CF) 
substrate, and then liquid crystal (LC) is added between the two substrates, to form an LCD panel 
which can then be sold for profit. 
In this model, the plant consists of production machines and inspection machines. Production 
machines perform each processing step needed to convert a bare substrate into a TFT substrate. 
However, production machines can also introduce defects, which render the LCD unusable. If the 
defective substrates are not found during production, then they will finally be discovered when the 
LCD panel is activated. At that point, the entire LCD panel must be scrapped, which includes the CF 
substrate and LC. 
The manufacturer thus uses inspection machines to detect defects in substrates during production. A 
defective substrate, when found, is scrapped immediately. In this way, the plant does not expend 
additional production resources on substrates that will eventually be thrown away. 
Each inspection machine takes the place of a production machine, however, so each inspection 
machine reduces the potential output of the TFT manufacturing plant. The total number of machines in 
the plant is fixed. Thus, the LCD manufacturer is looking to find the number of production machines, 
and therefore the number of inspection machines, that maximizes the plant’s overall profit including 
the costs of the CF substrate and LC. Too few production machines leads to a low production output, 
decreasing profit. Too many production machines leads to too few inspection machines, resulting in 
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excessive CF and LC scrap. The manufacturer must find the right balance that will maximize the 
overall profit of the plant. 
For simplicity, the TFT production process consists of five layers. Each layer requires five processing 
steps. At the end of each layer, the substrate can be examined by an inspection machine for defects. If 
there are not enough inspection machines to cover every layer for every substrate, the substrates are 
sampled instead, where each substrate is randomly selected to be inspected, depending on inspection 
capacity. It is assumed that the sampling rate for each layer is the same. The inspection machine can 
detect defects from previous layers as well as the current layer, but multiple defects on a single 
substrate do not increase the detection rate. The outcome of an inspection is simply that a defect was 
detected, resulting in a scrap of the substrate, or that no defect was detected, and the substrate 
continues with production. There is also a chance of detecting a defect when none exists, resulting in 
the scrapping of a good TFT substrate. 
The inspection machine vendor is introducing a new model, and thus there is uncertainty about the 
quality of the newer inspection machines. Specifically, there is uncertainty about the newer inspection 
machines’ throughput (number of substrates processed per day) and defect detection rate (probability 
of detecting a defect). To help make the decision about the number of production machines to 
purchase, and thus also the number of inspection machines, the manufacturer can gather information 
about the newer inspection machine model to better understand its capabilities. 
The manufacturer would like to maximize the plant’s profit at the end of two years from the start of 
construction. As a simplification, it is assumed that during the first year the plant is involved with 
moving in the different machines and setting them up, while the second year is when the machines are 
in full operation. There are costs to purchasing each production and inspection machine, as well as 
costs of production such as for each bare substrate and for each processing step. 
The profit over the two years for different inspection machine throughputs and defect detection rates, 
as a function of the number of production machines purchased, is shown in Figure (1). 

 
Figure 1. Net Profit Based on Number of Production Machines Purchased. 

Depending on the inspection machine throughput (first value) and the defect detection rate (second 
value), there is a rapid decrease in profit if the manufacturer selects less than about 180 production 
machines. However, the optimal number of production machines can vary from 197 to 233 depending 
on the inspection machine parameters. 
For this paper, the manufacturer’s prior beliefs are a uniform distribution for the inspection throughput 
between 90 and 120, and a uniform distribution for the defect detection rate between 0.7 and 0.9. If the 
manufacturer gathers information, the information is perfect; the actual values for both of these 
parameters will be revealed perfectly. 
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4.2 Problem Formulation 
The goal is to formulate the manufacturer’s decision process mathematically, including both the 
information-gathering aspect as well as the production decision (i.e. number of production machines to 
purchase) aspect. For the latter, the manufacturer’s production decision is how many production 
machines to purchase, with the inspection machine throughput and defect detection rate as uncertain 
parameters. These make up the design parameter 𝑥𝑥(𝑖𝑖) and uncertain parameters 𝑦𝑦 respectively. Since 
there is only one design parameter in this example, the superscript (𝑖𝑖) will be dropped. The model 
described in Section 4.1 and shown in Figure (1) represents 𝑓𝑓(𝑥𝑥,𝑦𝑦). It represents the relationship 
between the manufacturer’s production decision and uncertain parameters with the outcome under 
interest in terms of the plant’s net profit. 
The manufacturer can choose to gather information, incurring a cost of 𝑐𝑐𝜃𝜃. For this paper, perfect 
information will be assumed, and thus: 

𝑓𝑓(𝑥𝑥,𝑦𝑦)|𝜃𝜃 = 𝑓𝑓(𝑥𝑥, 𝜃𝜃) (11) 

The decision problem confronting the manufacturer is thus: 

Maximize �E𝜃𝜃 �max
𝑐𝑐

{𝑢𝑢(𝑓𝑓(𝑥𝑥, 𝜃𝜃) + 𝑐𝑐𝜃𝜃)}�  , max
𝑐𝑐
�E𝑦𝑦�𝑢𝑢�𝑓𝑓(𝑥𝑥,𝑦𝑦)���� (12) 

The outcome of solving Equation (12) gives the highest expected utility. In the course of solving the 
problem, the arguments to those maximizations, namely whether or not to gather information and the 
number of production machines to purchase, will also be found, which inform the manufacturer of 
what alternatives to choose. Although the first alternative involves an expectation over 𝜃𝜃 while the 
second alternative involves an expectation over 𝑦𝑦, the manufacturer’s beliefs about 𝜃𝜃 prior to receiving 
the information is the same as his beliefs over 𝑦𝑦 itself; the two distributions are identical. Note that the 
differences between the two alternatives are the flipped order of expectation and maximization 
operations, and the cost of gathering information. The latter alternative involves one maximization 
over uncertain parameters 𝑦𝑦, while the former alternative involves many maximizations, one for each 
possible value of 𝜃𝜃. Thus, one involves a single “larger” optimization problem, while the other 
involves many simpler optimization problems. A decision tree of the decision is shown in Figure (2). 

 
Figure 2. Decision Tree for Engineering Example. 

In this paper, the manufacturer will be assumed to have a CARA risk attitude. 

4.3 Results 
The above engineering example was simulated via quadrature of the uncertain parameters of 
inspection machine throughput and inspection machine defect detection rate. The expected value of 
perfect information based on risk attitude, in terms of the certainty equivalent of the expected utility, is 
shown in Figure (3). 
If the risk coefficient is less than zero, indicating a more risk-prone risk attitude, then the expected 
value of perfect information is also lower compared with under risk neutrality. Intuitively, this means 
that if the manufacturer is more willing to accept the downsides, then the value of receiving perfect 
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information about the uncertain parameters is lower; the manufacturer does not value the information 
as highly. Similarly, if the risk coefficient is greater than zero, indicating a more risk-averse risk 
attitude, then the expected value of perfect information is higher. This means that the manufacturer is 
more willing to have additional information about the potential outcomes in order to avoid the possible 
downsides of the design decision. 
As an example, say the manufacturer’s risk coefficient were 6 per $1 million, and the actual cost of 
gaining perfect information were $1.40 million. If the manufacturer analysed the decision without 
considering risk attitude, i.e. under risk neutrality, the calculated value of perfect information would be 
$1.37 million. Under risk neutrality, then, the recommended solution would be to not gather 
information, and to make the purchase decision under the currently available information. However, 
with the manufacturer’s risk attitude taken into account, the calculated value of perfect information 
would be $1.48 million. Thus, the manufacturer should expend resources to gather more information, 
or study this decision further in the event that the information is not perfect. If the actual cost of 
information is within the band in between $1.37 million for risk neutrality and the actual values of 
perfect information for different risk coefficients as shown in Figure (3), then the manufacturer will 
make a non-optimal decision if risk attitude is not taken into account. Although this difference of 
about a million dollars may not seem significant in light of the possible profit of hundreds of millions 
of dollars, the decision itself is still worth a significant amount of money, regardless of the total 
expenditure for this construction project. 
As a side note, there are several kinks in the graph in Figure (3). This is because the manufacturer 
must choose an integer number of production machines to purchase, particularly in the case of not 
gathering more information, even though the optimal number may include fractions of a machine. For 
example, for risk coefficient 𝑐𝑐 from -10 to -5.4, if information is not gathered, the optimal number of 
production machines to purchase is 204. For −5.3 ≤ 𝑐𝑐 ≤ 0.2, the optimal number of production 
machines to purchase is 205, and so forth. This discrete number of allowable machines to purchase 
leads to different segments with noticeable kinks at their boundaries for the certainty equivalents. 

 
Figure 3. Expected Value of Perfect Information Based on Risk Attitude. 

5 DISCUSSION AND FURTHER WORK 

In the engineering example, it was found that greater risk aversion did lead to a higher value of perfect 
information. Although Eeckhoudt and Godfroid (2000) have previously investigated a counterexample 
of this, further insight into the conditions under which greater risk aversion does lead to a higher value 

-10 -8 -6 -4 -2 0 2 4 6 8 10
1100

1150

1200

1250

1300

1350

1400

1450

1500

1550
Dollar Value Of Perfect Information based on Risk Attitude

Risk Coefficient (per million dollars)

D
ol

la
r V

al
ue

 o
f P

er
fe

ct
 In

fo
rm

at
io

n 
(in

 th
ou

sa
nd

s)

 

 

Value Under Risk Attitude
Value Under Risk Neutrality

8



ICED15  

of perfect information, and indeed of the relationship between them, would be beneficial to decision 
makers in an engineering context. 
Additionally, risk aversion and the value of information of subsets of uncertain parameters can be 
studied. Although this paper only investigates the case of perfect information versus not gathering 
information, the engineering example purposely includes multiple uncertain parameters for future 
study of this type of problem. This allows for modelling the gathering of information in stages (i.e. 
sequentially), which better represents the typical decision problem confronting engineers in projects. 
In such situations, the upstream decisions will affect the downstream decisions, and thus that effect 
should be considered in making the upstream decisions. Such decisions can be very difficult to 
computationally solve because of the large number of nested expectations and maximizations 
involved. Thus, many practicing decision makers tend to view the situation more heuristically, rather 
than using a formal decision theoretic procedure. A better understanding of this effect in a Value of 
Information context, combined with the decision maker’s risk attitude, will give better guidance for 
decision makers when considering the effect of information in a decision problem. 
Although this paper assumed that the information source gave perfect information about the outcomes, 
the work can be extended to imperfect (sample) information. This would more accurately reflect the 
decision situation facing many decision makers in an engineering project. Since some imperfect 
information sources are repeatable, i.e. will give different results for each test (such as testing a 
material’s yield strength, which will give different results for different samples), modelling imperfect 
information as well as sequential information can lead to greater insights. 
The more general problem formulation given in Equation (3), compared with the typical formulation 
given in Equation (1), can be applied to a wider variety of situations. For example, it can be used to 
study the case where the cost of gathering information is itself uncertain. In a risk neutral situation, 
Equation (1) can be applied to this type of problem, by substituting expected cost for the cost. 
However, when risk attitude is considered, Equation (3) should be applied. 
Finally, although this work assumed constant absolute risk aversion, other risk attitude models can be 
applied. Because non-neutral risk attitudes lead to greater mathematical complexity in the solution of 
information problems, one avenue of research is finding more efficient methods for computing the 
value of information under different utility functions. A related question of how much deviation from 
risk neutrality leads to how different of a solution can also be investigated. This would give insight to 
decision makers about whether or not the additional mathematical complexity of incorporating risk 
attitude is worth the greater understanding of the problem and more accurate solution compared with 
simply assuming risk neutrality, an information problem of its own. 

6 CONCLUSION 

This paper investigated some of the challenges involved when the Value of Information problem 
formulation is combined with risk attitude in an engineering context. It showed that the typical 
problem formulation implicitly assumes risk neutrality, and does not generally apply for a non-risk 
neutral risk attitude. The paper also showed the formulation for a decision maker with a constant 
absolute risk aversion (CARA) risk attitude. It demonstrated how the optimal decision changes when 
risk attitude changes in a manufacturing example. 
Although decisions involving the gathering of information has been studied for many years under 
various Value of Information approaches, it is only fairly recently that incorporating risk attitude in 
modelling these decisions has been recognized as a topic of research. By incorporating a decision 
maker’s risk attitude, the problem formulation is more complete and can more accurately reflect the 
considerations of the decision maker. As society embarks on more and more sophisticated projects, the 
ability to more accurately model decision problems and provide more accurate guidance for decision 
makers in complex engineering projects will lead to improved outcomes and better use of our planet’s 
finite resources for a more sustainable future. 
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