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Abstract 
This paper presents a new failure analysis method, Failure Identification for Mission Analysis 
(FIMA), which performs an overall and mission-specific failure analysis for complex systems. The 
FIMA method identifies all possible functions of a complex system and then analyzes how various 
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aims to utilize failure information to enhance the adaptability of complex systems in order to reduce 
the effects of failures and extend lifespans. 
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1  INTRODUCTION 

 
Technological advancements have allowed for the creation of many complex systems capable of 
performing a variety of tasks a variety of different ways, simplifying processes and helping automate 
many industries. Unfortunately, along with the benefits of being able to produce complex behaviors, 
complex systems also produce complex failures, which can cause great difficulty for failure analysis 
due to the fact that the different functions of a complex system may all experience significantly 
different effects from the same failure.  Thus, the various use-cases of a complex system must be taken 
into account in order to provide accurate failure information. Unfortunately, the inclusion of these 
possible complex use-cases is where current methods fall short.  Most current failure analysis 
methods, many of which are discussed in the following section, typically only identify potential 
component failures and how they might affect component and system-level behaviors, in a general 
sense.  These methods do not consider a failure’s effect on specific missions, however. A mission is 
defined here as the system’s high-level use-case objective; for example, an airplane getting from point 
A to point B would be its mission.  Mission tasks, on the other hand, are the discrete actions that must 
be done to complete a mission; for example, taking off, cruising a particular route, and landing would 
be three abstract mission tasks for an airplane. Not taking into account such mission details greatly 
limits current analysis methods because during one mission task a failure may cause drastic changes to 
the system’s performance, while during another, that same failure might not be noticed at all.  Thus, 
the system’s expected use after a failure occurs must be considered in order to accurately identify the 
effects and severity of the failure, and therefore, this paper presents a new method to do just that: the 
Failure Identification for Mission Analysis (FIMA) method.  
Along with identifying which functions or mission tasks are still achievable after a failure occurs, it is 
also important to know if there are any functional or control redundancies that could help restore any 
lost functionalities; a functional redundancy is the utilization of healthy components in a new fashion 
in order to compensate for reduced or lost functionalities of unhealthy components, and a control 
redundancy is a parameter change to maintain nominal performance (Umeda et al., 1995).  
Understanding a system’s functional and control redundancies is the first step towards improving a 
system’s robustness.  Robustness is a system’s ability to adapt to failures and extend its own lifespan 
in order to get the most use before any external involvement is required, such as the repair or 
replacement of faulty components. The human body is an excellent example of a robust complex 
system as it is constantly adapting to failures through the use of redundancies.  For example, if you 
sprain your ankle, the body’s pain sensors will feel the failure and adjust its functionality by walking 
slower and with a limp; putting more weight on the healthy leg is a functional redundancy and walking 
slower is a control redundancy.  If these adjustments were not made and a normal walking style at a 
normal pace was continued then the injured ankle would be more susceptible to further injury and 
eventually total failure.  Unfortunately, non-living complex systems cannot feel pain and thus will 
attempt to continue operating at full capacity on unhealthy components, increasing the likelihood and 
rate of further degradation until a total failure occurs.  Therefore, the FIMA method presented in this 
paper has been designed to identify when, where, and which redundancies are needed based on current 
mission plans.    
The FIMA method described in this paper focuses on a quasi-quantitative analysis approach using 
performance state-machines.  This method is a continuation of research done by the authors on using 
performance state-machines for failure analysis (DeStefano, 2014 & DeStefano and Jensen, 2014).  
The quasi-quantitative approach in this paper focuses on abstract failure modes, such as ‘Nominal,’ 
‘Degraded,’ and ‘Defective,’ but allows for different degrees and types of degradation by 
incorporating physics-based equations to more accurately define a system’s behavior during nominal 
and faulty conditions, such as a channel being ‘10% too big/small’.  These new behaviors are then 
used to assess and optimize the system’s performance for specific mission plans. This paper will first 
explain the theory and methodology for the FIMA method and then apply it to an example case study. 
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2  BACKGROUND 

Two of the main failure analysis methods currently used in industry are Failure Modes and Effects 
Analysis (FMEA) (Nannikar et al., 2012 & Tague, 2004) and Failure Modes, Effects and Criticality 
Analysis (FMECA) (Reliability Analysis Center, 1993).  However, these methods do not use function-
based modeling.  These methods use only static failure definitions to identify the causes, effects, 
probabilities, and criticality of known failures that a system may experience. However, the analysis is 
explicitly on how a component’s failure will affect that single component’s performance, while the 
propagating effects on the other components’ and the overall system’s functions are not explored.  
Moreover, different use-cases, or missions, are not explored.  Other existing methods that do explore 
model-based failure analysis include the Function-Failure Design Method (FFDM) (Stone et al., 2005 
& Stone et al., 2006), Function-Failure Identification and Propagation (FFIP) (Kurtoglu and Tumer, 
2008 & Jensen et al., 2012), and Risk in Early Design (RED) (Grantham-Lough et al., 2008 & 
Grantham-Lough et al., 2009). These methods focus on function-based modeling to identify the 
behavioral effects of a system’s possible failure modes, as well as how failures might propagate 
through the system. Some methods, such as FFIP, also provide a more expansive analysis by including 
physics-based behavioral equations in order to more accurately define failure effects on system 
performance.  Unfortunately, these methods, similar to FMEA and FMECA, do not consider the 
various potential missions that a system may be asked to perform, and therefore, they provide only a 
limited understanding when it comes to complex systems and their complex failures. 

3  THEORY & METHODOLOGY 

The first step of the FIMA method is to create an abstract model of functional relationships and 
dependencies between the system’s components. These functional relationships are not based on 
internal system structure, but rather only on functionality, as well as any other factors that may affect a 
system’s performance, such as a component’s manufacturing process or environmental influences. 
Structure is not valued here because in complex systems where components can transfer electrical, 
material, or signal information, just because two components may be next to each other structurally, 
they do not necessarily have any interaction with one another.  Therefore, only a component’s 
functionality is assessed. 
The FIMA method uses Simulink state-flow models to identify the functional relationships and the 
different potential failure modes, and uses MATLAB coding to initiate failure scenario simulations. 
MATLAB and Simulink were used as the modeling software for this research, however the FIMA 
method should also be able to be applied using any other state-based, signal processing software. Each 
component’s state-machine allows for that component to switch between any of its potential 
performance states, such as “Nominal Performance” or “Degraded Performance,” and then provide a 
unique output value based on which state the component is currently located. Within each potential 
performance state, governing equations are used to describe how the different states, or types of 
failures, will influence the system’s behavior. For example a “Degraded” failure’s severity can be 
simulated anywhere on a scale of 0-100% degraded for the component’s functionality, as well as its 
speed if applicable.  Also, if a “Defective” failure occurs, a failed position can be identified, such as an 
airplane’s landing gear failing open or closed.  This ability to identify different severity and types of 
failures is very important in being able to understand how various mission tasks will be affected.  For 
example, if an airplane’s landing gear becomes “Defective” and fails in the open position after takeoff, 
the failure would still be manageable as the cruising performance would only be degraded, however, if 
the landing gear fails in the closed position, this would result in a critical failure as now the landing 
task would not be achievable without crashing.     
Once all system components have been created and defined within the Simulink model, the user can 
begin simulating specific failure combinations for general system analysis, as well as specific mission 
analysis using a customized MATLAB code.  First, the user will be prompted by MATLAB to input 
the health state of each component; the health state includes whether a failure has occurred and, if so, 
what type of failure it is, and lastly, how severe it is.  With this information, the behavioral models 
will be able to calculate the remaining functionalities of the overall system.  Next, the user can input 
specific mission tasks, such as move from point A to point B to point C.  Then, the program identifies 
the remaining functions that are capable of completing each individual task based on the system’s 
current health.  If the remaining functions are not capable of completing the mission tasks, then the 
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program will indicate that the mission is not possible and will specify which parts are responsible for 
losing that specific capability.  If the mission is possible, the program will indicate this along with 
what, if any, redundancies were needed. Redundancies are based on the optimization portion of the 
program.   
The FIMA method’s optimization technique is based on trying to balance the failures throughout the 
system by looking at each component’s health and all possible remaining solutions to the individual 
mission tasks, and then ranking the faulty components from most degraded to least degraded. Then, if 
a system has three parts for example, the program looks at the top 20 solutions that limit the necessary 
functionality for the most degraded component, from which the top 10 solutions are then chosen for 
the second most degraded component, from which the top solution for the least degraded component is 
finally chosen as the “best” solution.  By performing this type of optimization, the goal is to create a 
balanced rate of degradation by forcing the least degraded components to compensate for the most 
degraded, but still limiting these compensations as much as possible.  This is done to extend a 
system’s lifespan by keeping it from suffering a critical failure in one part, while all other parts are 
still healthy.  For example, a system would be able to get much more use if all parts were 90% 
degraded before one of them finally failed, as opposed to one part failing when all the other parts are 
only 20% degraded.  This optimization is used to create the “best” course of action to complete 
specific mission tasks, but the “best” course of action is defined within the MATLAB code based on 
the necessary importance of certain aspects of the mission.  For example, a system could be optimized 
to complete a mission in the shortest amount of time, or it could be optimized to repeat a mission the 
most possible times before a critical failure occurs; for the case study described in the following 
section, the system was optimized for the latter.  Lastly, the optimization procedure will not only help 
balance failure degradation among components but will also help make all mission plans more robust. 
Lastly, metrics within the MATLAB code are created to provide a system’s Overall Coverage Rating 
(OCR), Mission Time, and Mission Robustness Ratings (MRR).  Overall Coverage Rating is the ratio 
of a faulty system’s remaining possible functionalities versus a nominal system’s possible 
functionalities.  This OCR value will identify how much of a system’s functionality was eliminated by 
the system’s current failure scenario.  The Mission Time value will be the time it takes to complete all 
of the mission’s tasks based on the optimized solutions.  Lastly, the Mission Robustness Ratings are 
essentially the same as the OCR, however, there is an MRR for each individual mission task in order 
to identify which tasks are most affected by the current failure scenario.   The OCR and MRR values 
are then used to compare and improve mission plans for specific failure scenarios, based on which 
missions are more robust and therefore, which will be better able to handle further system 
degradations. In the following sections, this method will be applied to an adaptable robot arm system. 

4  CASE STUDY: 3-LINKAGE ROBOTIC ARM 

4.1.  Case Study: Overview 
A 3-linkage robotic arm system, with a Base Joint that rotates on the X-Y axis, and three Arm Joints 
that rotate on the r-Z axis, as seen in Figure 4.1, will be the focus of this case study. This robotic arm 
system was chosen because it has a well understood behavior with known governing equations, as well 
as the fact that it is an adaptable complex system with multiple functional redundancies and mission 
possibilities, which will serve as an excellent example for the FIMA method’s mission analysis 
capabilities.  The robotic arm system described here is meant to represent a potential manufacturing 
robot that might be found on a factory floor assembly line that would have missions of moving objects 
between different positions in the [X,Y,Z] coordinate plane.   

 
Figure 4.1 – 3-Linkage Robotic Arm Assembly  
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Unfortunately, when everything is working nominally there is no simple way of determining how 
robust a mission plan truly is, and it is only when specific failures begin to appear that any accurate 
mission analysis can really take place. For example, one mission plan might only require moving an 
object a short distance, but one of the locations is at the robot’s maximum reach, while another 
mission plan has the robot moving an object much further distances, but the locations are closer to the 
base.  While the first mission plan may be quicker and require fewer movements, thus, making it seem 
like the better mission, a small degradation is all that would be necessary to make the maximum reach 
unachievable, making the first mission plan impossible, while the second mission plan would go 
virtually unaffected.  This shows how the differentiation between how various missions will react to a 
given failure scenario is of the utmost importance because depending on the type of failures that occur, 
a system may need to re-optimize or possibly even completely change a mission plan.  This analysis 
problem is why the ability to identify the “best” mission based on the Mission Robustness Ratings for 
each mission task is one of the major unique contributions of the FIMA method.  Therefore, this 
robustness analysis will be addressed in much greater detail in this case study. 

4.2  Case Study: Methodology 
The first step was to create the Simulink state-machines for each component: the Base Joint, Joint1, 
Joint2, and Joint3. Because all of the components are the same type of mechanism, i.e. joints, the 
state-machines were all able to be nearly identical, differing only in their governing equations’ 
nominal values; the Base is defined as having a nominal movement range of 0 to 180 degrees, Joint1 
can range from 0 to 90 degrees, and Joint2 and Joint3 can each range from -180 to 180 degrees.  Each 
joint was sampled every 1 degree. Sensitivity analysis was done by altering the sampling size to every 
3 degrees, as well as every 6 degrees, for each of the use-cases in section 4.3.  For the 3-degree 
sampling size the differences in the resulting OCR, MRR, and Mission Time values were minor 
(average differences of less than 1% for the OCR values, roughly 2% for the MRR values, and roughly 
1 minute for the Mission Times), however, for the 6-degree sampling size the difference in results 
were quite significant and unpredictable.  Each linkage was then given a length of 3 feet and the 
nominal rotational speed of each was defined as 30 degrees per second. Next, for simplicity sake, 
during this case study it was assumed that there were no obstacles within the arm’s movement range.  
Also, the linkages were identified as connecting off-axis in order to allow the arm to rotate in on itself.  
These criteria were all chosen arbitrarily for this example and would likely differ depending on the 
type of arm assembly and quality of components. Also, these criteria could be changed to include 
obstacles or exclude certain types of arm movements by adding limitations within the MATLAB code.  
Lastly, all arm coordinates were calculated using the following forward kinematic equations within the 
MATLAB code:  

 

r = L1*cos(Theta1)+L2*cos(Theta1+Theta2)+L3*cos(Theta1+Theta2+Theta3)           (1) 

Z = L1*sin(Theta1)+L2*sin(Theta1+Theta2)+L3*sin(Theta1+Theta2+Theta3)            (2) 

X = LR*sin(Theta0)                                                          (3) 

Y = LR*cos(Theta0)                                                          (4) 

 
where, L1, L2, and L3 are the lengths of the three arm linkages, LR is the total length of the arm in the 
r-direction, and Theta0, Theta1, Theta2, and Theta3 are the joint angles for the Base, Joint1, Joint2, 
and Joint3, respectively.   
Next, the MATLAB user is prompted to input the health of each component, as well as the degree of 
failure and type of failure that they wish to have simulated; the types of failure for this system are 
movement and speed-based.  A joint’s movement range can be “Defective,” resulting in the joint being 
stuck at a user-specified angle, or it can be “Degraded,” anywhere from 0-100% that can then be 
applied to either a Lower, Middle, or Upper limitation.  For example, a 10% Lower limitation for a 
range of 0-180 degrees would result in a new range of 18-180 degrees, a 10% Middle limitation would 
result in a new range of 9-171 degrees, and a 10% Upper limitation would result in a new range of 0-
162 degrees.  Likewise, a joint’s speed can also be “Degraded” anywhere from 0-100%.  Also, along 
with the user-inputted failure-based speed degradation, a joint’s speed is also programmed to decrease 
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linearly over time depending on the component’s lifespan rating, i.e. if a joint has a lifespan of 10,000 
180 degree movements with a speed of 30 degrees per second, then if that joint moves 180 degrees 
5,000 times it will now only be capable of moving at 15 degrees per second. 
The Simulink model first processes the current state of each component based on the user’s inputs and 
then provides output data, such as new minimum and maximum achievable angles and speeds, that 
will then be processed by the MATLAB code to determine the Overall Coverage Rating, as well as the 
graphical representation of all functionalities for the overall system, which can be seen in Fig. 4.2; the 
top two plots represent the overall coverage of the arm for a nominal system on the X-Y and r-Z axes, 
respectively, and the bottom two plots represent the remaining coverage for a random faulty system. 
The example faults present in the bottom plots were: a 20% Middle limitation for the Base, a 25% 
Middle limitation for Joint1, a 40% Upper limitation for Joint2, and a 35% Lower limitation for 
Joint3.   

 

 
Figure 4.2 – Possible Movement Coverage for 3-Linkage Robot Arm 

(Top: Nominal, Bottom: Degraded) 

(Left: X-Y axis, Right: r-Z axis) 

 
Next, the user will input the various mission tasks, i.e. moving an object from point A to point B in the 
[X,Y,Z] coordinate plane, as well as how many cycles of these tasks need to be completed.  Each 
[X,Y,Z] location was given a margin of error of 0.2 feet based on the assumption that the arm’s claw 
would be at least slightly bigger than the object it is picking up.  These user inputs will then result in 
mission-specific output data that will be compared with the overall system output data to determine 
mission feasibility, to optimize the mission plan, and to identify any redundancies or repairs that may 
be needed.   An example of the plot generated comparing the original, nominal arm angles to the 
degraded but optimized arm angles for a given mission can be seen in Fig. 4.3; the mission tasks were 
to move between two arbitrarily chosen points, [3,4,4] to [2,2,5], and the degraded plot was for the 
same example failure scenario as seen in Fig. 4.2, where Joint2 is the most degraded component and 
therefore, the movements were optimized for Joint2. 
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Figure 4.3 – Nominal (Left) vs. Optimized for Degradation (Right) arm positions on the r-Z 

axis 

 
For this system, two use-cases were explored in the following section.  The first is using the FIMA 
method for comparing two different missions during the same failure scenarios, and the second is 
utilizing the failure data to optimize a set mission plan to handle further failures by altering the 
position of the entire robot. 

4.3  Case Study: Results and Discussion 

4.3.1 Use-Case 1: Mission Comparisons 
The first use-case was to evaluate different mission plans, i.e. different sets of tasks, or initial and final 
positions, for different failure scenarios in order to show that by using the Overall Coverage Rating 
(OCR) and the Mission Robustness Ratings (MRR) the FIMA method can accurately identify which 
mission plan is best.  The mission data for this use-case can be seen in Table 4.1.  This mission data 
includes three different failure scenarios, where three failure factors for each component are identified: 
Percent Degraded-Range, Limitation Type, and Percent Degraded-Speed, respectively.  Each scenario 
is then evaluated for two different mission plans: A and B.  Each mission plan is responsible for two 
tasks: moving the robotic arm from an Initial position to a Final position, and these missions are to be 
repeated 250 times.  The outputs for each mission are the Mission Feasibility (including which 
component the mission’s optimization was based), the total Mission Time, and the Mission 
Robustness Ratings for both mission tasks, i.e. the initial and final points. 
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Table 4.1 – Mission Data for Use-Case 1 

 Failure Scenario #1 Failure Scenario #2 Failure Scenario #3 
Base 0%, None, 0% 0%, None, 0% 0%, None, 0% 

Joint1 5%, Upper, 1% 10%, Upper, 1% 45%, Upper, 1% 
Joint2 12%, Middle, 1% 24%, Middle, 1% 48%, Middle, 1% 
Joint3 9%, Lower, 1% 18%, Lower, 1% 47%, Lower, 1% 
OCR 75.4% 56.1% 15.1% 

 A B A B A B 
Initial [3,4,5] [2,3,4] [3,4,5] [2,3,4] [3,4,5] [2,3,4] 
Final [-2,3,6] [-3,4,6] [-2,3,6] [-3,4,6] [-2,3,6] [-3,4,6] 

Cycles 250 250 250 250 250 250 
Feasibility Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 

Time 24.01 min 46.68 min 23.73 min 50.63 min 24.57 min 37.86 min 
MRRi 94.3% 95.2% 89.1% 55.8% 27.6% 27.3% 
MRRf 95.2% 91.4% 90.1% 86.0% 32.0% 30.4% 

 
For Failure Scenario #1, the Overall Coverage Rating for the arm is 75.4%, which indicates that 
roughly a quarter of the system’s total functionality has been lost.  Next, looking at the two mission 
plans, both are feasible and both were functionally optimized for Joint 2, which is what was expected 
due to the fact that Joint 2 was the most degraded component.  Finally, the mission time, MRRi, and 
MRRf values are evaluated, where MRRi and MRRf are the Mission Robustness Ratings for each of 
the mission tasks, i.e. the initial and final positions. For the time comparison, the shorter the Mission 
Time the better.  However, the shortest mission is not always the most robust and this is where the 
Mission Robustness Ratings’ importance is seen. As mentioned earlier, the individual Mission 
Robustness Ratings are indicators of how the system handles specific failure scenarios for its various 
mission tasks, and it is desired that both MRRi and MRRf values are larger than the OCR due to the 
fact that the OCR indicates the overall, average robustness.  Therefore, larger MRR values would 
signify that the mission plans have above average robustness. As seen in Table 4.1 both missions have 
relatively high MRRi and MRRf values, implying that neither mission was very affected by Failure 
Scenario #1, and they are also above the OCR value, which as previously mentioned, is desired.   
However, when directly comparing mission A to mission B, mission A is better all-around, as it not 
only can complete the necessary 250 cycles faster, but the mission tasks are more robust on average 
than those for mission B.  Even after only the first failure scenario, mission A can be identified as the 
preferred mission plan, however to show that this assumption holds true for further degradations, 
Failure Scenario #2 and #3 were simulated.  As expected, mission A remains faster and more robust 
than mission B for all scenarios.  In Failure Scenario #2, mission A becomes significantly better in all 
categories than mission B.  However, in Failure Scenario #3, while mission A is still better, the 
different components’ degradations are becoming balanced through optimization, and, as expected, the 
optimization has also begun to balance each mission’s robustness ratings, as well as helping to 
decrease each of their mission times. 

4.3.2 Use-Case 2: Mission Adjustments 
The second use-case was to demonstrate that by using the OCR and MRR values for a specific failure 
scenario, a mission plan could be greatly improved; both the failure scenario and mission plan were 
arbitrarily chosen for this study. Unfortunately, because certain mission plans might not be able to be 
altered, such as a robot picking up a bolt and then placing it on a specific area of a vehicle coming 
down the assembly line, the position of the entire robot itself might need to be altered in order to 
increase the system’s robustness. Therefore, it is assumed that the arm assembly is capable of being 
moved on the X-Y plane, such as by being placed on wheels, in order to optimize its position relative 
to the initial and final positions it must reach. As seen in Table 4.2, the original mission plan is again 
responsible for two tasks of moving the robotic arm from the initial position to the final position, 250 
times, and the output variables for each mission are the same as for use-case 1: Mission Feasibility 
(including which component the mission’s optimization was based), total Mission Time, and Mission 
Robustness Ratings for both mission tasks.    
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Table 4.2 – Mission Data for Use-Case 2 

Base 0% 
Joint1 15%, Lower, 1% 
Joint2 15%, Lower, 1% 
Joint3 20%, Middle, 1% 
OCR 57.6% 

 Original (Shift: -2Y) (Shift: +3X) (Shift: -1Y) 
Initial [-1,1,1] [-1,3,1] [-4,3,1] [-4,4,1] 
Final [4,3,-1] [4,5,-1] [1,5,-1] [1,6,-1] 

Cycles 250 250 250 250 
Feasibility Y, FO-J3 Y, FO-J3 Y, FO-J3 Y, FO-J3 

Time 71.57 min 44.46 min 34.99 min 31.03 min 
MRRi 17.9% 8.3% 60.5% 80.8% 
MRRf 50.3% 81.8% 53.1% 82.7% 

 
As seen in Table 4.2, when the failure scenario occurs, the original mission plan is identified as 
incredibly poor.  It is still feasible, however, both MRR values are well below the OCR, indicating that 
there are far better mission plans available, and this is where the designer would ideally be able to 
tweak the position of the robot in order to find a more robust mission plan.  First, a shift in the 
negative Y direction was applied, i.e. backing the robot away from the assembly line, and while this 
adjustment improved the mission time and the MRR of the final position, it reduced the MRR of the 
initial position.  Next, a shift in the positive X direction was applied, and this effectively improved the 
mission time and both MRR values, however, the MRR value of the final position is still below the 
OCR, so further improvements can still be made.  Finally, another shift in the negative Y direction was 
made and this resulted in vast improvements to both MRR values and the overall mission time.  While 
further improvements may have been possible through further adjustments, for the purposes of this 
study, these improvements were sufficient.  Ultimately, this study showed that by following the FIMA 
method, using the OCR and MRR values, a designer could effectively reduce the original mission time 
by more than half, while also vastly improving the system’s mission robustness. 

5  CONCLUSIONS 

With the constant advancement of technology and the ever-growing capabilities of complex systems, it 
is absolutely vital to know what the system is being used for in order to accurately understand the 
effects of failures on the overall system performance, and the lack of this mission analysis is where 
current methods fall short. By using the Failure Identification for Mission Analysis (FIMA) method, 
on the other hand, mission assessments and optimizations can be performed in order to balance failure 
degradations and increase mission robustness for any number of mission plans in an effort to 
maximize a system’s use in between repairs.  This unique ability could be especially beneficial for 
complex systems that are incapable of receiving repairs, such as the NASA rovers exploring Mars, 
because even if certain functions are lost due to failures, it is vital to know which functions and 
mission tasks are still feasible in order to maximize the amount of use the existing rovers can perform 
before new ones need to be sent.    
By utilizing failure information for mission analysis, the FIMA method can provide more 
comprehensive and useful information than other current failure analysis methods.  With next-
generation technologies becoming increasingly more complex, it is not enough anymore simply to 
know how a system will fail.  What the system will be doing, what environment it will be doing it in, 
and what functional adjustments are available must all be accurately identified in order to effectively 
analyze the effects of complex failures in a complex system, and the FIMA method has been designed 
to do just that.  First, the FIMA method identifies and assesses the potential functions and mission 
tasks that a complex system may be asked to perform, and then based on various potential failure 
scenarios, the functions and tasks that are the most and least robust can be identified.  Then, by using 
this information, the FIMA method is able to optimize the system’s performance in order to more 
effectively achieve specific mission plans for any given failure scenario.  
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6  FUTURE RECOMMENDATIONS 

While, currently, the health state of each component and the specific degree of failure must be inputted 
by the user, in the future, with the addition of actual sensor data, the MATLAB code could be used for 
real-time optimization of a real-world physical system.  In this capacity, the code would again not care 
about the causes of failure, but instead only about the system’s functional capabilities that remain. For 
example, for the manufacturing robot in the case study, instead of the user inputting a “Percent 
Degraded” value prior to a mission, an actual robot would run a quick diagnostics check by rotating 
each individual joint to their minimum and maximum angles at peak speed.  Then, instead of the state-
machines having to calculate the individual minimum and maximum values and speeds, the sensors 
would send their data directly back to the code that would then proceed as before to optimize the arm 
angles based on the different minimums and maximums.  
Future work will also include path-planning optimization.  For this paper’s case study, it was assumed 
that there were no external obstacles and therefore, the arm was able to move between points in a 
straight line.  However, in more complex cases, it will be necessary not only to know how a failure 
affects the arm’s joint angle combinations at various mission points, but also how a failure affects the 
arm’s ability to avoid obstacles as it moves from one point to the other.  For example, some internal 
failures or external obstacles may affect the arm’s ability to move left and right, while others may 
affect the ability to extend in and out, and so depending on the required mission plan, the arm’s path 
between points will need to be optimized along with the joint angles. 
Lastly, future work will include validation of the models through experimentation on a physical 
testbed.  For the case study examined in this paper, this validation could be done a number of ways.  
Mission abilities and times could be tested and compared with the failure scenarios and mission plans 
simulated through control input constraints for each joint’s speed and minimum and maximum angles, 
or by physically replacing the testbed’s healthy joints with different types of degraded joints.  
Degraded joints could be manufactured to have various degrees of wear, jams, or breaks and then 
based on each of these effects on rotational speeds and minimum and maximum angles, mission plans, 
arm positions and paths, and the effects of further degradation on the overall system performance 
could be tested. 
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