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1 INTRODUCTION 

Planning design processes is a difficult endeavour throughout a product development project. It 
encompasses activities ranging from strategic planning decisions related to system architecture 
selection to operational scheduling of design task sequences. Often, designers need a quick way to 
estimate design effort based on the current state of the product, for example when selecting among 
system architecture alternatives, planning an iteration loop or choosing a way to implement a change 
to respond to an unexpected problem or a new customer request. The design tasks necessary to carry 
this out differ in their nature. While some tasks like testing are similar regardless of the solution 
chosen, others depend on the selected alternative or on what exactly needs to be changed. Analysing 
the effects of changes on both product and process enables the designer to consider process effort as 
soon as a modification to an existing product is considered and before making detailed decisions about 
the product or the process. This paper brings together three different modelling approaches: (1) 
Change Prediction Method (CPM) (Clarkson et al., 2004) which assesses the risk of change 
propagation; (2) aggregation of change prediction models (Ariyo et al., 2007); and (3) process 
simulation based on change prediction models (Maier et al., 2014).  It compares process simulations of 
a detailed CPM matrix with an aggregated matrix to assess the effect on the predicted process effort 
and shows that more abstract matrices can also be used to start the process planning by accounting for 
the level of granularity. 
The following section briefly discusses model granularity in general and with relation to product 
decomposition. Section 3 introduces the simulation model used to conduct the experimental part of in 
the context of the broader simulation literature, while Section 4 introduces the algorithmic approach to 
calculate likelihoods of change propagation on different levels of granularity and the product model 
used in this study. Section 5 describes the experimental set-up, analyses and compares the simulation 
results on two levels of granularity and reflects on the implication of different levels of granularity for 
the simulation model, before conclusions are drawn in Section 6. 

2 MODEL GRANULARITY AND DECOMPOSITION 

The Oxford Dictionary (2014) defines granularity as “The scale or level of detail present in a set of 
data or other phenomenon”. Different levels of granularity usually imply hierarchical models, which 
relate different levels of detail to each other. In the process of hierarchically decomposing a product 
structure, larger systems are divided into smaller subsystems and the relationships between these 
subsystems are mapped. Simon (1962) distinguishes between interactions among subsystems and 
interactions within subsystems and notes that the latter are generally stronger. He also states that 
hierarchical systems are often ‘nearly decomposable’, which means that the interactions between its 
subsystems may be weak but not negligible. This highlights the importance of system decomposition 
and thus the resulting level of granularity of its subsystems has for the analysis of product architecture 
and connectivity. Different tasks and different stakeholders involved in the design process demand or 
require information on different levels of abstraction. Additionally, the choice of granularity can 
influence the time or cost to build, maintain and use a model. On the other hand, a certain level detail 
may be necessary to satisfy the client’s demands or to obtain results with sufficient accuracy or 
fidelity. As a result models often have uneven levels of detail, where some better-known issues are 
presented in a great amount of detail while others are left at an abstract level.  
Although modellers frequently have to make choices regarding decomposition, Chiriac et al. (2011) 
note that past research does not discuss the effects of the level of granularity on architectural analysis. 
Chiriac et al. (2011) focus on how the degree of modularity of a product is affected by the level of 
granularity it is represented in. A range of idealised systems and one real-world complex system are 
represented in Design Structure Matrices (DSMs) on two different levels of granularity and analysed 
for modularity. They conclude that the results of architectural analysis can be distorted by the level of 
granularity of its components and advise to be cautious when defining system decomposition for 
analysis. The purpose of this paper is thus to contribute to this discussion and add a different 
perspective by investigating the implications of model granularity, and in particular model 
decomposition, on the simulation of change propagation and rework. 
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3 DESIGN PROCESS SIMULATION BASED ON PRODUCT MODELS 

Process simulation models usually describe process tasks, their dependencies and probabilities of 
failure (for a review see Wynn, 2007). While a small number of integrated product and process models 
exist, they often do not use product specific information for process simulation. 
Maier et al. (2014) present a discrete-event simulation model to study the effects of change 
propagation and resulting rework by generating an array of possible activity sequences based on a 
product model. The model is based on a DSM of components and their interfaces in a design, in which 
numeric entries between 0 and 1 describe the impact and likelihood of change propagation associated 
with each dependency (Clarkson et al., 2004). Design maturity is modelled on a component level and 
represents the state of design progress. The model synthesises the effects of three important issues in 
design: iteration carried out to progress the design (Smith and Eppinger, 1997), iteration necessary to 
correct errors or address design changes (referred to as rework in this article (see e.g. Wynn et al., 
2007)), and change propagation due to structural interdependencies in the product being designed 
(Clarkson et al., 2004). Simulation experiments based on this model can help to evaluate simple task 
prioritisation rules based on factors like component connectivity, maturity and development times 
(Table 1). Maier et al. (2014) analyse the performances of a range of task prioritisation policies for 
various input product models. While they suggest that certain prioritisation rules are beneficial 
regardless of the scope of the project and of various other contextual variables, the question remains 
how the granularity of the input model affects the simulation and its results. 
Progress is represented as transitions between maturity levels, which are assigned to each component 
to describe its state of progress throughout the simulation. Five discrete levels of maturity are used, 
allowing for four transformations between levels. Work on a component increases its maturity level. A 
decrease can be triggered by rework or by propagated change. In the case of change propagation, the 
corresponding entry in the impact DSM determines by how much the maturity level is reduced.  
The approach makes a number of simplifying assumptions: 
 The product architecture, as represented by the impact and likelihood DSMs, can be modelled in 

advance of the design process and does not change during it.  
 The simulation starts with components having the lowest possible maturity and ends when all 

components reach their maximum maturity levels.  
 Tasks that are similar for all solutions, such as testing or documentation are factored out. 

Evolution of maturity levels towards their final values thus reflects progression in designing the 
individual components.   

 Interconnected components have to progress together. A component can only be selected for 
further work if the maturity levels of all other components it is dependent on are at most one level 
lower than its own. Thus, in the absence of rework the maturity of any component would never 
be more than two levels higher than any of the components it is dependent on.  

 Reaching each maturity level for the first time requires an identical percentage of the total 
duration assumed to be necessary to complete the component. 

 Task durations depend on change magnitude and are subject to learning effects (see e.g. 
Browning and Eppinger, 2002). The improvement curve used is based on a concept by Cho and 
Eppinger (2005), assuming an improvement by a certain percentage (25%) on each consecutive 
attempt until a minimum fraction (25%) of the original duration is reached. 

 Task durations are not subject to probabilistic variation.  
Change propagation is modelled based on the logic of the CPM (Clarkson et al., 2004) and simulated 
using a Monte-Carlo approach governed by the likelihood DSM. Propagation of changes is terminated 
after five steps, noting that this limit has been found realistic by Pasqual and de Weck (2011) and that 
the multiplying of probabilities make long propagation chains very unlikely. The propagation path 
ends if the algorithm revisits a component already selected for a change in the current stage. 
In the model, changes are triggered randomly with a constant probability of occurrence. Changes can 
be interpreted as being caused directly by the task or as uncovering a problem originating elsewhere. If 
a change occurs it is taken into account by reducing the maturity level of the affected component. If a 
change occurs in a component that is being worked on, the activity is interrupted. This reflects that 
when the need for a change is discovered, it causes a step backwards in the design process and hence 
reduces the maturity of a component; rework is needed to attain its prior state. 
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Priority decisions occur every time a task is completed and select one of several possible tasks to 
continue. The decisions are simulated using priority policies consistently prioritising the task with 
either the minimum or maximum value for the selected decision criterion (see Table 1 for a numbered 
overview). If two or more tasks have identical values, a random tiebreaker chooses between them. 

Table 1. Decision policies and corresponding criteria of components to be prioritised. 

Decision criterion Prioritisation rule 

None 0: Random selection 

Task duration 1: Shortest first 2: Longest first 

Current maturity level 3: Lowest first 4: Highest first 

Active sum in binary DSM 5: Lowest first 6: Highest first 

Passive sum in binary DSM 7: Lowest first 8: Highest first 

Active sum in risk-DSM 9: Lowest first 10: Highest first 

Passive sum in risk-DSM 11: Lowest first 12: Highest first 

Active sum in impact-DSM 13: Lowest first 14: Highest first 

Passive sum in impact-DSM 15: Lowest first 16: Highest first 

Active sum in likelihood-DSM 17: Lowest first 18: Highest first 

Passive sum in likelihood-DSM 19: Lowest first 20: Highest first 

Total attempts 21: Fewest first 22: Most first 

Total amount of rework 23: Lowest first 24: Highest first 

4 CHANGE PROPAGATION ON DIFFERENT LEVELS OF GRANULARITY 

4.1 Change propagation on different levels of granularity 

Extending the CPM, Ariyo et al. (2007) present an algorithmic approach to predict change propagation 
on coarser levels of granularity through a bottom-up aggregation procedure. They distinguish between 
intra- and inter-system connectivity. Based on that, their algorithm allows to calculate likelihoods of 
change propagation from system-to-components, components-to-systems and systems-to-systems. 
Being able to calculate change propagation likelihoods on different levels of granularity can reduce the 
effort to develop hierarchical models (once the initial fine DSM is created) and allows for consistent 
estimation of change likelihood on multiple levels. However, the approach also has some limitations. 
For instance, it is not possible to estimate the impact of change propagation on different levels. It can 
be expected that the impact of a change propagating from a system to another system is higher than 
from a component to a component but the approach does not enable such an assessment. A measure of 
change impact can help to estimate the magnitude of rework required after a change. However, there is 
no indication of how the process might be affected by these changes. Also, intra-system change 
propagation is not represented anymore on a system level, which, in the case of a highly modular 
product, could conceal that amount of change propagation and rework in a design. Section 5 describes 
how a better understanding of these effects can be gained by simulating the process of designing the 
respective product, including change propagation and resulting rework.  

4.2 Used product model with two levels of decomposition 

For the purpose of this study, we use the product model of a diesel engine described by Jarratt et al. 
(2004) and adopted by Ariyo et al. (2007). Details about the data capturing can be found in the original 
publications. While other product models and hierarchical decompositions can be used in the 
simulation model, this article focuses on one product and two levels of granularity to illustrate the 
underlying principles. Figure 1 shows the component level DSM of the Diesel Engine, which 
comprises 41 components. This matrix shows the direct likelihoods of changes propagating from one 
component to another with the cells shaded accordingly. The DSM also highlights which components 
belong to which system. Ariyo et al. (2007) note that the specific decomposition depends on the 
purpose as well as the context and requires some negotiation. For the purpose of their study, they 
group the 41 components into 10 systems. This decomposition is adapted here.  
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Figure 1. Component level model of the Diesel Engine 

Based on the likelihood DSM shown in Figure 1, the combined likelihoods of change propagation can 
be calculated on a system level. We used the algorithm described by Ariyo et al. (2007) to calculate 
numeric values (refer to the original article for a more detailed description). The algorithm first 
computes the combined likelihoods of changes propagating between two components across a system 
boundary. It multiplies the combined likelihoods between the initiating component and all the ‘border’ 
components within the same system (through which changes can propagate to the affected component 
in another system) with the respective likelihood of changes directly propagating from these ‘border’ 
components to the affected component. These values are aggregated across all possible paths between 
the two components, resulting in combined component-to-component likelihoods that take system 
boundaries into account. In the next step, the component-to-system likelihoods are calculated by 
aggregating the probabilities that a change will propagate from the initiating component to any 
component in the regarded system. Finally, these values are averaged across all the components in the 
initiating system to obtain combined system-to-system likelihoods. Figure 2 shows these values 
(rounded to two decimal places) in a system level model of the Diesel Engine.  
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Figure 2. System level model of the Diesel Engine 

5 EXPERIMENTAL RESULTS 

To explore the implications of different granularities of the input product model on the process 
simulation, we conducted a set of simulation experiments. Due to the scope of this conference paper, 
this is not a fully comprehensive experimentation but rather aims to provide insights on some 
important points. The nature of the change propagation model and different granularities of input 
models have implications for the presented simulation model. Both the CPM and the algorithm to 
calculate change propagation likelihoods on different levels of granularity are static and analytical 
approaches. To simulate the dynamic design process based on product models with different levels of 
decomposition additional assumptions have to be made (see Section 5.3 for more details).   
We choose the presented experiments firstly to represent the differences between the simulation results 
for the two input models without changes to the simulation model. Secondly, we analyse one possible 
way to account for the different granularity of input models, listing further options and noting that 
these will have to be included in a more exhaustive study. Table 2 gives an overview of the 
experiments conducted in the following sections and states the set-up of the main model parameters. 
The parameters that are manipulated with respect to the basic simulation of the original diesel engine 
DSM are shaded in the table. While the simulation allows for concurrency, the number of resources is 
limited to one. Even though this simplifies conditions significantly it also ensures that the effects of 
varying granularity can be investigated without influences from concurrency effects. The following 
sections sum up the observations in the experiments and reflect on the implications of input model 
granularity for the simulation model more generally. 
 

Table 2. Overview of the simulation experiments 

Pre-set parameters 5.1 (a)  5.1 (b) 5.2 (a) 5.2 (b) 

Total simulation runs 10000 10000 10000 10000 

Input product model Fine Abstract Abstract Abstract 

Priority policy 0 – 24; 0 0 – 24; 0 0 0 – 24; 0 

Number of resources 1 1 1 1 

Probability of initiating change 0.1 0.1 0.1 - 0.32 0.3 

Max. change propagation steps 5 5 5 5 

Max. allowed maturity difference 2 2 2 2 

Number of maturity levels (ML) 4 4 4 4 
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5.1 Observations with initial basic set-up 

After calculating the likelihoods of change propagation on the system level (see Figure 2) several 
model parameters are adjusted in a basic way to enable an experimental comparison of the two 
models. In the first step, the durations to develop individual components are simply added up to derive 
a simplified estimate of the duration to develop the entire system they belong to. Because the original 
product model does not include durations we assume that all components take equal proportions of 
time to develop (in the absence of iterations). Consequently, the system takes this amount of time 
multiplied by the number of its components to develop. Initially, both the original and the aggregated 
model are simulated with the same basic parameters (Table 2). Figure 3 shows the performance of the 
tested policies (Table 1) relative to random task selection (policy 0) and a histogram of the total 
duration for 10,000 runs with policy 7. 

  

Figure 3. Simulation results for (a) original model (left) and (b) aggregated model (right) 

The main differences between the original and the aggregated model immediately visible in Figure 3 
are the less pronounced differences in relative policy performance and the decreased mean and 
variance in total duration. These effects are inter-related as the performance is measured in terms of 
duration. Although much less pronounced in the aggregated model, policy performance remains 
qualitatively similar (with the exception of the policies based on task duration - because of identical 
values in the original model only learning effects are accounted for). The lower duration of the 
aggregated model can be explained in several ways. Firstly, simply summing up the expected 
durations of components in a system underestimates the actual duration expected for the entire system 
as it omits iterations and rework due to intra-system interactions. Secondly, the identical change 
initiation likelihood for both simulations results in fewer such changes for the smaller input DSMs, 
given that changes are only initiated at the completion of task. Thirdly, related to the previous point, 
the fact that the number of maturity levels per component/system is identical leads to a lower number 
of total maturity steps for the entire product, which again decreases the number of changes. Fourthly, 
the impacts of change propagation may be underestimated as, due to lack of information and in 
absence of a mechanism to calculate them, they are assumed to be uniform across the aggregated 
DSM. The following Section investigates one way to account for the different properties of an 
aggregated model and Section 5.3 discusses the implications for simulation more generally. 
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5.2 Observations with adjusted experimental set-up 

After having compared the simulation results of the original and aggregated model, some model 
assumptions are modified to account for changes in the level of granularity (see also Section 5.3). As 
discussed in the previous section, the main levers to adjust the simulation model are: likelihood of 
change initiation, aggregation of task durations on system level, number of maturity level per system 
and impacts of change propagation on system level. To analyse the effects of one of these parameters 
we perform a sensitivity analysis and compare the results to the simulation of the original diesel 
engine model. 
We focus on the probability of change initiation, due to the limited scope of this study. Further 
possibilities to account for changing granularities have been outlined in Section 5.3 and will be briefly 
discussed but not analysed in detail in the next Section. To investigate the impact the change initiation 
likelihood has on the simulation results for the aggregated product model, a sensitivity analysis is 
carried out with the corresponding model factor. Figure 4 displays the results of the aggregated model 
with respect to the original model (displayed on the left side of the graph, see also Figure 3). This 
shows that the mean duration of the aggregated model under policy 0 and change initiation likelihood 
0.3 corresponds to the original model. It has to be noted though that the characteristics of the 
distribution are different. For the original model (and the aggregated model with adjusted factor) the 
average is 3.35 (3.35), the median is 3.08 (3.17), the lower quartile 2.47 (2.62) and the upper quartile 
3.93 (3.84). This shows that the results for the detailed model are more spread and more positively 
skewed (elongated tail at the right). Figure 5 displays the relative policy performance and histogram of 
policy 0 of the aggregated model with change initiation likelihood 0.3. Comparing this to results of the 
original model (Figure 3) shows that the impact of policies is less pronounced as well as a general 
decrease in variance as mentioned above. While the qualitative policy performance remains mostly 
similar, it is worth noting that the effects of unfavourable polices is underestimated. 
 

 

Figure 4. Sensitivity Analysis for change initiation likelihood with policy 0 (original model on 
the left side) 

 

Figure 5. Simulation results for aggregated model with change initiation likelihood 0.3  
(see Figure 3 (a) for a comparison with the original model) 
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5.3 Reflection on the implications of different granularities in the simulation model 

In the simulation model used in this study, varying levels of input model granularity mainly has 
implications for the following model assumptions and variables: change initiation likelihood, task 
durations, impacts of change propagation, number of maturity levels, learning effects and priority 
rules. After having analysed the impacts of the first one in the previous section the remaining are 
briefly discussed in the following paragraphs. 
The durations to complete parts of the design can be aggregated in several ways. One way is to sum up 
the durations to develop the individual components that are part of a system. While this is an easy 
solution it does, however, not account for system-internal iterations. It is also possible to simulate the 
development of the systems independently and then take the resulting durations as an input for a 
system level simulation. Other options include starting with one of the above and adding a factor to 
account for the amount of iteration and rework that is not accounted for in a more abstract model. 
In the original simulation model, the change initiation likelihood is constant throughout the design 
process. This means that in an aggregated model fewer changes will be initiated due to the lower 
number of components. The change initiation likelihood value can thus be adjusted to account for 
these effects. 
The algorithm by Ariyo et al. (2007) calculates the likelihood of changes propagating on different 
levels of granularity but does not account for their impact. The simulation model requires both values 
for its change propagation algorithm. So, either the impacts of change propagation have to be 
calculated in similar fashion or the impacts are assumed to be a certain value for the purpose of the 
simulation. Arguably, the impact of a change on the system level is likely to be bigger than on a 
component level. While this is partly accounted for by higher task durations the impacts of change 
propagation on different levels remains to be investigated. 
In the original simulation model, components are assigned a discrete maturity level between 0 and 4. It 
can be argued that it makes sense to model maturity progression more finely on a system level, given 
that systems comprise several components with specific design maturity levels. 
The learning effect used in the original model may be more appropriate on a component level. 
Although learning effects can also be expected on a system level their magnitude is expected to be 
lower due to the more distributed and fragmented nature of developing a bigger, more complex entity. 
Lastly, while the priority rules themselves are generic to the design process they could be extended or 
adjusted in the light of different granularities. For instance, policies could be implemented that take 
into account how big a system is or how interconnected it is internally. It is also worth noting that the 
implications of these policies are different on a more abstract level, moving from operational planning 
and task scheduling to higher level strategic planning. 

6 DISCUSSION AND CONCLUSIONS 

In this study we have simulated design processes based on a product model with two different levels 
of granularity. This has shown that the simulation results are sensitive to shifts in the level of 
granularity, which highlights the importance of considerations regarding model granularity. In general, 
the simulation with the aggregated model exhibits less variance in the results and, in absence of 
adjustments, a reduced total duration. To obtain a similar total duration between the detailed and 
aggregated model we analysed the sensitivity to change initiation likelihood. It is possible to achieve 
identical mean total durations, which suggests that aggregated models can also be used for initial 
planning purposes. However, differences in the statistical distribution remain and the impacts of 
policies are underestimated, especially for unfavourable ones.  
Due to the restrictions of this conference paper, the analysis had to be limited. We only consider two 
models of the same product on different levels of decomposition, which allows to derive initial 
insights but not a more general theory. Both the number of architectures and levels of granularity have 
to be increased and different decompositions included to attempt a comprehensive analysis. This study 
adopts a bottom-up algorithm to abstract from a detailed model. Further understanding of the role of 
model granularity could be gained by including a top-down perspective and investigate combinations 
of these two perspectives. For instance, a model could be detailed and abstracted again, analysing the 
effects and deriving guidelines to ensure consistency. Given that the decomposition and change 
probabilities depend on the perspective of the involved stakeholders, the influence of the original 
model on derivations with different levels of granularity should be addressed. Also, this article only 
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investigates the effects of one adjustment to the simulation model to account for varying input model 
granularity. In order to obtain a more exhaustive picture of the effects of such adjustments and their 
interactions, they have to be analysed in a simulation study with a range of input models. This will 
allow to quantify the relationship between model factors, input model properties and simulation results 
as well as determining valid combinations. Another limitation concerns the two approaches this study 
builds up on. Even though they are thought to have high face validity as they are synthesised from 
established and accepted concepts, they still only provide a particular perspective on the implications 
of model granularity. An empirical study would improve the understanding of the implications and 
handling of granularity decisions in industry and allow validating the results against real-world 
scenarios. 
Model granularity is an important topic yet scarcely covered in the research literature. There is little 
discussion of how the granularity of a model was chosen and in many cases the assumption seems to 
be that a correct level emerged spontaneously. This study, along with the work of Chiriac et al. (2011), 
highlights the importance the level of granularity has for architectural analysis and design process 
planning. By extending the analytical change prediction method to a dynamic process simulation, we 
are able to draw conclusions on the effects of change propagation and rework on the design process. 
Being able to do this on different levels widens the scope of the model in terms of which planning 
decisions can be supported. Also, by directly linking system architecture with design processes the 
presented approach more generally enables investigating the impacts of model granularity across 
domains. We believe that the results obtained in this study, although currently limited in their scope, 
can be related to more general considerations about (simulation) model granularity and justify further 
research. For instance, the presented approach could be extended to study other cross-domain cases 
with an underlying network structure, such as information flow processes on different hierarchical 
levels in an organisation. 
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