
SYSTEMS ENGINEERING AND DESIGN 1677

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2012 
Dubrovnik - Croatia, May 21 - 24, 2012. 

OPTIMIZING SYSTEM ARCHITECTURE FOR 
ADAPTABILITY 

A. Engel, Y. Reich, T. R. Browning and D. M. Schmidt 

Keywords: systems architecting, modularity, transaction costs, financial options, architecture 
options, DSM, optimization, adaptability, TRIZ 

1. Introduction 
A system’s overall lifetime value can be improved if its useful service life can be increased. However, 
since a system’s stakeholders change their desires over time, the system’s value (in terms of its fit with 
those desires) will diminish unless it can be adapted [Fricke and Schulz 2005]. Thus, adaptability, the 
ability of a system to be changed to fit varied circumstances, is often a valuable attribute of system 
performance. However, since adaptability may come at a cost, more is not always better: investments 
in adaptability may provide diminishing or even negative returns. Therefore, it is essential to allocate 
resources for adaptability at an appropriate level and to the most effective locations in a system 
architecture. 
Extending the work of Engel and Browning [2008], this paper presents an updated model of a system 
architecture that accounts for component option values and interface costs. The model includes an 
updated objective function that incentivizes segregating components with high option values and 
aggregating components with high interface costs. Next, moving beyond previous work, we apply the 
model to a hypothetical but highly realistic unmanned air vehicle (UAV) to demonstrate the variance 
in overall system value as a function of different component aggregations (i.e., assignments to 
modules). Finally, we apply an optimization model to seek the optimum architecture from an 
adaptability perspective. These results provide interesting insights for system architects and managers, 
regarding engineered systems as well as customer service. 

2. Architecting systems for optimal adaptability 
Sered and Reich [2006] showed how standardization and modularization of a systems design can 
minimize its overall development effort. Standardization involves expending extra efforts upfront to 
design robust parts that would work in any foreseen situation. Consequently, it is assumed that 
expected external changes would not lead to any change in the standardized components. 
Modularization means that interfaces among components are established in advance, so that changes 
would be likely to be isolated within specific modules and not propagate to interfacing modules. 
Consequently, future changes would be likely to cost less, because they would be likely to affect fewer 
modules. In this way, component modularization choices and investments in interface standardization 
(a design cost) purchase an option for reduced redesign costs. However, the correct combination of 
standardization and modularization implies a tradeoff. Browning and Honour [2008] proposed a 
method to measure the overall lifecycle value of an enduring system. Such a measure provides a more 
comprehensive basis for directing system architecting investments than merely using overall 
development effort, which does not account for future redesign costs and will therefore always 
undervalue investments in adaptability. Based on these concepts, Engel and Browning [2008] 
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reviewed ideas from options theory, transaction cost theory, and system architecting and developed an 
optimization model for a system architecture’s adaptability value (V). Adaptability value is an index 
used to represent the relative costs and benefits of changing a system after its initial deployment. 
Essentially, options theory provides a theoretical basis for addressing the future value of the system, 
and transaction cost theory provides a basis for dealing with interfaces between its components. These 
concepts were combined to produce the following model:1 
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where M is the number of modules, and Xm is the adaptability value of the mth module, defined as: 

m m mX OV IC   (2) 

where OVm is the aggregated option values of the components, and ICm is the aggregated (external) 
interface costs, of the mth module. 
A basic tenant of option theory is that many small options are more desirable than a few large ones 
(because they provide more future flexibility in exercising the options). Hence, the adaptability value 
of a system should increase with the number of modules (where, in the extreme, system components 
are synonyms with modules).2 We model this as: 
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where N is the number of components in the overall system and Nm is the number of components in the 
mth module, such that 
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where I are the interface costs between component m and other components outside its module 
(interface costs within the module are ignored for purposes of this calculation), and the N+1th 
component represents interfaces with any components outside the system. (The i, j, and k indices refer 
to the interface’s position in a design structure matrix [DSM] layout.) The overall model to be 
optimized is therefore: 
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A component’s OV is estimated via an application of the Black-Scholes financial option pricing 
method [Black and Scholes 1973], as described in Engel and Browning [2008]. Each interface cost is 
computed by including the costs of developing, producing, maintaining, and disposing the interface.3 
The assignment of components to modules determines whether a particular interface is rendered 
internal or external to a module. We apply principles of transaction cost theory [Coase 1937], and the 
high likelihood that all of the components in a module will be redesigned collectively, to assume that 
interfaces within a module have negligible interface costs for the purposes of this model. 

                                                        
1 While keeping in mind the updates noted, see Engel and Browning (2008) for further explanations of the model’s components. 
2 Engel and Browning (2008) introduced a parameter called the Adaptability Factor to account for the difficulty of upgrading a system in 

the future. Upon further evaluation, we realized that this element could be considered as already built into the Black and Scholes 
equations. Hence, it does not appear in equation (3). 

3 The reader should note that all the right-side variables of equation 5 express monetary values (i.e., Dollars, Euros, Drachmas, etc.). 
Therefore, the architecture adaptability value (V) itself expresses a monetary value. 
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Thus, the model rewards (value increases) the isolation of components from one another (due to their 
increased option potential) but penalizes (value decreases) when such a segregation exposes high 
interface costs. Equation (5) creates a tradeoff between the benefits of having many small options and 
the costs of the interfaces to maintain them. Thus, the optimal assignment of components to modules 
will maintain sufficient option value (future adaptability) at a reasonable interface cost. The maximum 
value architecture is unlikely to contain either extreme solution: an architecture with M ≈ N or an 
architecture with M = 1. Note that the model’s weightings of the two competing terms is based on past 
literature but remains open to adjustments based on empirical validation and the characteristics of 
particular instances. 

3. Model solution 
We attempt to optimize the model with a genetic algorithm that explores varied assignments of 
components to modules, taking into account the constraints among components and with the system’s 
environment (all of which are captured in a design structure matrix [DSM] representation). The basic 
operation of the genetic algorithm is classical. One point worth mentioning is the representation of 
architectures. Suppose we have N components. Consequently, there could be as many as N modules in 
the architecture. Each member in the initial population is a possible architecture. Its N components are 
randomly assigned to the N potential modules. 
Figure 1 illustrates the approach: In (1), each of the N = 8 components has been assigned to a different 
module. In (2), the eight components have ended being in two modules, whose name are arbitrarily 
referred to as “4” and “3”. In (3) one descendent after a crossover between (1) and (2) is depicted, 
where the crossover is after position three. In (4) the second descendant is depicted. Architecture (3) 
has four modules and architecture (4) has six modules. In our investigations so far, we have found that 
sufficient population size4 and enough iterations5 allows this simple representation to converge to what 
seems to be an optimum. 

 
Figure 1. Architecture representation and crossover operator 

4. Example 
We apply the model to an example of an Unmanned Air Vehicle (UAV) system. 

4.1 The UAV system 

A UAV (see artist rendering view depicted in Figure 2) is utilized for information gathering where 
extended mission times are required. Day (video) and night (Infra-Red) images are obtained in order to 
monitor forest fires, flooding and other disaster situations or for military purposes. The information is 
transmitted from the Air System (AS) to the ground station via radio signals. Operators in the Ground 
Control Station (GSE) send commands and receive status and payload images from the AS by means 
of the Ground Communication (GCO) subsystem. One or more Remote Terminal (RT) subsystems, 

                                                        
4 As a rule of thumb, population size should be equal or exceed the number of components. 
5 This information may be determined experimentally, considering the stability of optimization results and the available computations 

resources (especially time). 
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located within the transmission range of the AS can also receive images from the AS and display them 
to remote observers. The AS itself may be launched automatically from the Launcher (LNCR) and 
land autonomously on a designated landing strip. The Support Equipment (SE) subsystem provides 
facilities to test and analyze the status of all system elements. Finally, the Simulator (SIM) provides 
means for training the GCS operators in all aspects of handling the UAV system under simulated 
mode. 

 
Figure 2. UAV system (artist rendering view) 

4.2 UAV system architecture 

Figure 3 depicts the “as designed” UAV system architecture as a block diagram, and Table 1 describes 
the UAV’s system hierarchy including “leaf” components. These leaf components are defined as the 
lowest level elements which are of interest to a particular system designer. 
The “Exclusions” column indicates mutually exclusive component sets. There are three mutually 
exclusive sets in the table: the AS subsystem, the RT subsystem (both identified in Figure 3), and the 
rest of the UAV system. Components from mutually exclusive sets cannot reside within a single 
module due to spatial, technical or managerial limitations and therefore may interact only by means of 
an interface. 

4.3 UAV interfaces and their costs 

The internal and external UAV system interfaces are depicted in Table 2. An example of a component-
level interface cost is depicted in Table 3. The cost of each interface is derived from summing up the 
costs of materials, labor, and other expenses incurred during the lifetime of the interface (i.e., 
development, production, use/maintenance, and disposal phases). These estimates can be based on 
historical data or made by systems engineers. 
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Figure 3. UAV system in its environment - block diagram 

Table 1. “As designed” UAV system architecture 

 

Table 2. Internal and external UAV system interfaces 
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Table 3. Example - computing interface cost 

 

4.4 Computing a component’s expected future gain in value 

In order to use the Black-Scholes equation within an engineering domain, we must compute the 
expected future value gain of each component. Table 4 exemplifies our extension to the TRIZ theory 
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of evolutionary forecasting of technical systems [Mann 2003]. First, we examine each TRIZ “Law of 
Technical Systems Evolution” to identify relevant technical and/or business parameters likely to 
evolve and affect the value of the component during the studied timeframe (left hand-side of the 
table). Second, we evaluate the technical and business parameters in terms of their current and future 
level of improvements using an S-Curve methodology. Third, we estimate the relative weight of each 
parameter, ensuring a sum weight equal to 1.0. Next, we compute the initial and final weighted factors 
for each parameter and their corresponding totals. Finally, based on the component’s current value (S), 
we compute its expected future value (S’) and its expected value gain (S’-S). For instance, assuming 
the current value of a given component is 4,000€, we use the table to compute its future expected 
value (S’) and gain (S’-S) as: 

1,2,...' '

1,2,...

* 4.75
Future value = 4,000 7,900€ ; Gain = 7,900 4,000 3,900€

* 2.40

i ii

i ii
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Table 4. Example - Computing the expected future value of a component 

 

4.5 Architecture adaptability values 

We use a DSM to record the OV and interface data used by the model. The OV of each component is 
positioned along the diagonal of the DSM, and the Interface Costs are placed in the appropriate cells 
off of the diagonal. Figure 4 depicts the “as is” UAV system DSM with arbitrary but realistic OVs and 
interface costs. In this architecture, each component is its own module. This architecture provides 
maximum adaptability but requires a significant investment in interfaces (during design, testing, 
manufacturing, maintenance and disposal). This architecture has an adaptability value of V(1) = -
6,560€, meaning that the interfaces are quite expensive and dominate the result. Figure 5 depicts the 
new component assignments to modules after 10,000 iterations of the GA, with an architecture 
adaptability value of V(2) = -1,797€, a 73% improvement. 
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Figure 4. “As is” UAV system DSM 

 
Figure 5. Optimized UAV system DSM 

The intuitive approach to architect adaptable systems might be to base the design on a large number of 
small modules (represented, e.g., in Figure 4). Indeed, if adaptability was unrelated to cost, this would 
have been the correct solution. However, such architecture requires dealing with more interfaces, and 
the cost of these interfaces must be balanced and exceeded by the benefits of adaptability, all 
expressed in monetary terms. Consequently, it should not be a surprise that the optimized result leads 
the designer to create a more adaptable architecture, yet one that balances transaction costs, 
segregating components with high option values and aggregating components with high interface 
costs. 
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A far better optimization result could have been achieved had the optimizer not being constrained by 
the exclusion rules (defined in Table 1). Such an architecture would have an adaptability value of 
934€, but it generates a single module combining the Air communication component (residing in the 
air vehicle) with the ground communication subsystem. As predicted, the optimized architecture tends 
to lump groups of components into identified modules to optimize the tradeoff between higher 
adaptability and lower cost. In addition, the optimizer “suggests” combining the air vehicle Launcher 
(LNCR) and the Ground Control Station (GCS) into a single module. 

4.6 Comparison with a conventional DSM clustering scheme 

Often, in a conventional DSM clustering scheme, the diagonal contains no data (this corresponds in 
our model to having all Option Values equal zero). In addition, a one is placed when an interface 
exists between two components (this corresponds in our model to having all Interface Costs equal to 
one). With this set-up, Figure 6 depicts the conventional “as is” UAV system DSM and Figure 7 
depicts a conventional optimized UAV system DSM. 

 
Figure 6. “As is” conventional UAV system DSM 

Notwistanding the exclusions, which prevent us from clustering the physically separated system 
elements, one should observe the different results emanating from the two optimization schemes. In 
the conventionally optimized DSM (Figure 7), a set of ten components have been clustered into a 
single module (identified in color). However, optimizing system architecture for Adaptability leads to 
a more adaptable clustering solution made of three individual clusters (Figure 5). The algorithm 
incentivizes us to increase our up-front investment in establishing internal interfaces, therefore 
segregating components with high option values when interface costs are economically viable. At the 
same time, interacting components with high interface costs would tend to be clustered into a 
minimum number of modules (see for example components GCO-TRNS, GCO-REC and GCO-COM 
in Figure 5). 
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Figure 7. Optimized conventional UAV system DSM 

5. The model as an engineering tool 
Computational tools for doing a particular task offer immediate benefits to their users. In our case, the 
availability of a tool for calculating adaptability values is used to perform sensitivity analysis to 
provide a deeper understanding of the architecture design space. For example, consider the data in 
Figure 4 and assume that the future value of the system cannot be discerned with reasonable accuracy. 
The system engineer could analyze the resulting architecture with a set of factors multiplying the 
estimated OV and IC values. Suppose also that the designer has some control over different types of 
interfaces that would lead to different costs. Such variation would lead to a space with varying OV and 
IC factors (see Figure 8(a)). By performing simulations in this space, a map depicting the number of 
modules as a variation of the OV and IC values could be constructed. One should remember that the 
same number of modules does not mean the same modules; e.g., there are many possible ways to 
create five modules from 21 components. Nevertheless, such modules could be represented by a lattice 
in a way that distinguishes them and allows for more detailed analysis. Such analysis is left for a 
future paper. 
Suppose that the present values position the situation at point (1) in Figure 8(b). The availability of the 
simulations shows the system engineer that the decision regarding the number of modules that provide 
the best future adaptability value is sensitive to the estimations of OVs and ICs. Given the importance 
of the decision, the chart focuses the engineer to better estimate these values. When done carefully, the 
analysis would focus the engineer on particular component OV and ICs to study further. 
As another example, consider a situation in which the future system value is hard to estimate, line (2) 
in Figure 8(b). In this case, the simulation could be executed with varying inputs, and the engineer 
could observe the consequent transition between different architectures and make a choice even 
without knowing the exact future value. This analysis capability provides a way for engineers to 
determine whether their estimates are robust (do not have significant impact on the results) or require 
further work (have impact on the results). 
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Figure 8. Adaptability sensitivity space 

We executed such an analysis for our case study by varying OV  2,0  and IC  0,8  and the 

results are shown in Figure 9. The solution shown previously in Figure 5 chose six modules. However, 
it is clear from the sensitivity study in Figure 9 that, near the present inputs—i.e., (IC, OV) = (1, 1)—a 
slight increase of the OV values would lead to seven modules as the best choice. Consequently, better 
estimates of the OV factors might be worthwhile to obtain even at some extra cost. 

  
Figure 9. Case study adaptability sensitivity space 

6. Conclusions 
We presented a modified adaptability model that uses options and transaction cost theories to find a 
tradeoff between a monolithic, non-adaptive, but less expensive (to develop initially) system and a 
fully adaptive but expensive one. The tradeoff is found by combining some components into modules 
and thus saving their intra-module interface costs. The particular modules depend on the mix of the 
components’ future option values and their interface costs. We demonstrated the application of this 
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model to finding a cost-effective, adaptable architecture for a UAV system. Furthermore, we briefly 
discussed how this model can provide insight to systems engineers in making more sensible design 
decisions by performing sensitivity analyses with the model. Executing the model on real cases will be 
performed in the future as part of a large research project that will test the proposed model thoroughly. 
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