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ABSTRACT 
Two design synthesis techniques, both utilizing evolutionary computation, are compared. One 
employs growth and development of a model composed of finite element cells; the other employs a 
pre-defined fixed mesh of finite element cells. Both of these processes use a similar set of rules. In the 
fixed-mesh case, some of the rules present in the growth & development case have been disabled to 
preserve the fixed mesh. The development process starts with a single cell while the fixed-mesh 
method starts with a predefined volume of material comprising 640 cells. The fitness of individuals in 
both approaches is determined by evaluating a combination of four different performance objectives: a 
desired resonant frequency; an ability to support a stochastically varying external load; a desired 
vertical height; and a minimum weight. A solution with both types of models is found in a relatively 
small number of generations.  However, the growth & development approach generated design 
configurations with valuable engineering characteristics, including symmetry, smoothness, and 
regularity, while the fixed-mesh approach generated non-smooth configurations with porosity and 
inhomogeneity. 
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1 INTRODUCTION 
The development of design synthesis methods has been an active area of research for some time [1]. 
The goal of this work is to generate novel sets of design configurations that exhibit high performance 
properties for problems difficult to address with conventional synthesis methods.  Design synthesis 
begins without a proposed configuration, and exclusively utilizes the desired performance of the 
resulting designs to guide the generation of novel design configurations.  Many such techniques utilize 
stochastic search methods, such as genetic algorithms. This paper presents a comparison of two 
approaches to design synthesis. The first approach uses a fixed geometric mesh of elements and the 
stochastic search works to identify the material properties of each cell that produces the best overall 
performance. The second starts with a single cell that contains a set of growth & development rules; 
the stochastic search works to identify the set of rules that will cause the structure with the best overall 
performance to be grown & developed. 

1.1 Prior Work 
Artificial evolution, in the form of Genetic Algorithms (GA’s), has been used in a wide variety of 
application areas [2, 3, 4, 5]. The goal of this prior work has been to improve one or more features of 
solutions to a problem. The key element of GA’s, first stated by Holland [6], is implicit parallelism. 
The idea is that the GA scheme of actions; selection, crossover and mutation performed on N 
individuals, implicitly searches for an optimum in N3

The majority of optimization problems that make use of the genetic algorithm approach have 
employed direct encoding. In direct encoding, there is a one-to-one relationship between the genetic 
information in an individual and the configuration of the individual. Most commonly, the genetic 
information contains a description of the individual, in contrast with indirect encoding, where the 
genetic information contains a set of rules that, when executed (and perhaps influenced by various 
environmental factors), guide the growth & development of a single cell into an adult. 

 space. This result is powerful, since it enables 
the rapid exploration of large solution spaces.   



Genetic algorithms have been previously applied as an optimization method in structural evolution [2, 
7, 8, 9]. Traditional structural evolutionary methods generally start by generating a fixed mesh grid 
(like a chess board) with a predefined volume and constraints, such as external forces and boundary 
conditions [10]. Every cell in the grid can have one of two states, either material is present or absent. 
The genetic information in this approach contains information indicating the material state in each cell 
of the grid. Once the initial configuration and the boundary conditions are defined (loads, constraints, 
etc.), a finite element analysis is performed, treating each cell as a finite element, and an evolutionary 
process searches for the configuration exhibiting the best performance. This is an evolution using a 
direct encoding, with no growth or development or embryogenesis, and thus there is a one-to-one 
mapping between the genetic information (genotype) and the resulting individual (phenotype), 
resulting in an optimization problem with a large but finite number of possible states [11]. This 
method produces structures that reflect the underlying shape of the grid [2] and is not able to create 
continuous or smooth structures. These grid-based building-block structures are not only unrealistic 
from an engineering perspective, but from a mathematical point of view they search in a limited 
solution space, resulting in local optima. 
An early contribution in this area [2] begins with engineering requirements and subdivides a given 
spatial domain into a fixed number of finite elements with well-defined boundary conditions. The 
optimization procedure finds the optimum structure by removing the lightly loaded elements leaving 
only those which form the optimum structure. 
A different approach [7, 8, 9] demonstrates a way to synthesize a compliant two-dimensional MEMS 
device by eliminating cells from a fixed mesh according to the evaluation of three parameters. From a 
mathematical point of view, both these methods find the optimum configuration from a finite set of 
configurations (large but still finite) determined by the initial mesh. This restriction dramatically limits 
the ability of each method to find a global optimum. Since, for a given design problem, the total 
number of possible configurations is generally infinite. Another disadvantage of using a fixed mesh is 
the inability to generate arcs and curved objects without using a large number of elements. 
Indirect encoding, and the development of artificial embryogenesis, has been proposed previously [12, 
13, 14, 15, 16, 17, 18, 19, 20, 21]. In most examples the goal has been to evolve and grow a predefined 
target shape on a predefined grid starting from a single cell, using simple rules such as cell division 
and protein diffusion. Early work in this area has demonstrated the ability of indirect encoding to 
produce modular phenotypes in graphs and patterns [22, 23, 24]. Advantages of this approach include 
that the space of possible configurations is infinite and the elements are not restricted to a single shape 
but are allowed to be deformed and differentiated. In this way smooth, curved, structures can be 
synthesized. 
In the growth & development approach used here, an artificial embryogenesis of structures has been 
created. This is an extension of previous indirect encoding work by the authors [25, 26, 27, 28, 29]. 
The two fundamental elements of this work are the selection of the artificial cell (the basic structural 
finite element) comprising each individual, and the artificial genes (the rules) which are evolved into 
the genetic information of each individual. The genetic information of an individual is shared by all of 
its cells.  Beginning with a single cell, each individual cell executes its rules until a mature structure is 
formed.  Once maturity is reached, an evaluation scheme determines the fitness (performance) of the 
structure.  Evolutionary operations (selection, crossover, and mutation) alter and refine genetic 
information in a population of individuals over multiple generations. The results are structures that 
meet the desired performance goals. Computational details are presented in [25], and are briefly 
summarized below. 

1.1 Research Approach 
Stochastic methods are increasingly being used to generate, or synthesize, novel design configurations 
in a range of application areas.  This work compares two stochastic computation approaches.  
Evolutionary computation employing a direct encoding has been used previously, as outlined above.  
Indirect encoding, by contrast, is relatively new, and this paper presents a comparison of these two 
methods.  The approach presented here is to establish a design synthesis problem, where no initial 
configuration is proposed and only the desired performance of the resulting designs is provided, and to 
employ the two methods and compare the results. 



2 DESIGN SYNTHESIS METHODS 
The two design synthesis approaches compared here share some methodological characteristics. Both 
use an evolutionary approach where a population of individuals, each with a unique set of genetic 
information, is subjected to genetic operations (crossover and mutation) as well as evaluation of 
performance and selection. In the growth & development process, the genetic information is a set of 
rules governing the growth and development of an initial single finite element cell into a mature adult. 
In the fixed-mesh process, the genetic information is the material characteristics of each cell in the 
mesh (and therefore is a description of the design configuration). 

2.1 Rules and Actions 
Mimicking nature, the basic structure of a gene is an if-conditional then-action rule. During the natural 
embryogenesis of organisms like plants, every 3-D region can deform according to nine different 
geometric operations: one for isotropic growth, two for anisotropic growth (B), three for shear (S) and 
three for rotation [30], illustrated in Figure 1. In the artificial embryogenesis used here, three 
geometric operations were used; isotropic growth/shrink and a shear operation. Geometric operations 
are defined as actions

 

, and every geometric operation is assigned a unique alphabetic letter shown in 
Table 1. 

 
Figure 1. The four basic geometric operations observed in sub-regions of plants. 

 
Table 1. Cell geometrical actions. 

ID Name N Parameters 
A Shear 1 (d,e,f,i) × fractional coefficient 
S Isotropic Shrink 3 (a,b,c,g,h) × fractional coefficient 
C Isotropic Growth 1 (a,b,c,g,h) × fractional coefficient 

 
In addition to the geometric operation actions, cell-type actions are defined, shown in Table 2. These 
actions are the three basic operations that occur in the developmental process of every biological 
structure, including; cell division, cell death, and cell differentiation. Cell division splits the cell into 
two equally sized cells, such that the total volume of the divided cells remains the same as that of the 
initial single cell. Cell death causes a cell to be removed from the model. Cell differentiation alters the 
material properties of a cell. The properties of the three types of materials that the synthesis methods 
can utilize are shown in Table 3. 
 



Table 2. Cell-Type actions. 

ID Name N Parameters 
D Cell division 1 (d,e,f,i) 
K Cell death 0  
F Cell differentiation 0 (0,1) 

 
Table 3. Cell Materials. 

Material ID Yield Stress [MPa] Young’s Modulus [MPa] Density [Kg/m3] 
0 700 240 7 800 
1 600 145 5 800 
2 340 190 7 400 

 

2.2 Environment 
The environment in which the individuals are grown contains factors that every cell can sense and 
which can affect the way rules are executed, similar to the way genes are expressed. The relationship 
between the information that cells receive from the environment and the growth & development of the 
phenotype is not predetermined. Rather, conditionals

2.3 Growth & Development Process 

 are available to the evolutionary process that 
sense the concentration or gradient of each morphogen. In this way, the evolutionary process 
establishes the relationship between information and growth & development. As the phenotype is 
being grown, it is evaluated by means of a finite element analysis to determine the pattern of 
mechanical stresses and deformations in the phenotype [31]. Every cell is an extended 3-D non-
orthogonal finite brick element. Therefore, the structure and the mesh are identical, and are evolved 
simultaneously during growth & development. Cells also maintain information relating to their size, 
age, and distance from neighboring cells. 

In the development process a single cell grows & develops into a mature adult phenotype. The process 
starts with a single cell placed on the ground subjected to a gravity field, as shown in Figure 2. The 
large brown block at the bottom of each image in Figures 2, 3, 5, and 6 is the ground. The Z direction 
is perpendicular to the top surface of the ground. The cell is initially made of material type #0. 
 

  
a b 

Figure 2. Initial state of the growth & development process. a) A single cell initially made of 
material type #0. b) The stress distribution in the cell in the initial state, generated by the 

stochastically varying load which is shown by the pink region at the top.  

 
A morphogen radiating from the position of the load is placed at a fixed point in space above the 
ground. The morphogen diffusion and the gravity field create an environment that is sufficient to 
regulate the rules in the genome. Once a phenotype has grown to reach the morphogen, a load is 



applied to the top cells that coincide with the location of the source of the morphogen. This load 
generates a mechanical stress distribution along the phenotype which will alter the local environment 
on the cells, and can cause the rule/gene regulation mechanisms to alter the further growth & 
development of the cells. The pink region in Figure 2a,b represents the external load variation, at each 
time step a new load vector in this region is selected. The process of evaluating the mechanical 
stresses on the cells at each time step is performed by solving a finite element scheme. The load itself 
is randomly changes its direction and thus the mechanical stress inside the cell may change as well. 

2.4 Fixed-Mesh Process 
The fixed-mesh process, unlike the growth & development process, starts with a predetermined 
volume of material comprising a predetermined mesh of cells. All cells initially are made of material 
type #0, indicated by their brown color as shown in Figure 3a. During the fixed-mesh synthesis 
process, cells can either be removed or can differentiate (change material type) according to the 
genetic information in each cell. The fixed-mesh is maintained by utilizing the same set of rules as in 
the growth & development process, with the exclusion of rules for cell division, growth, and shear 
operations.1

 

 Excluding these rules from the fixed-mesh model maintains a fixed cell size and a fixed 
mesh grid. 

  
a b 

Figure 3. Initial state of the fixed-mesh process. a) A predetermined block made of 640 
cells, all cells are made of material type #0. b) The stress distribution on the cells in the 

initial state, generated by the stochastically varying load which is shown by the pink region 
at the top. 

 

2.5 Genome Structure 
The genome contains words which contain genes identified by their corresponding letters (shown in 
Tables 1 through 2, and in more detail in [25]). Every word starts with the letter “R” which indicates 
the number of times the particular word will be executed in a single time frame. The letter “Z” 
indicates the beginning of the word. The genes contain operations, parameters (e.g., morphogen 
concentration or gradient) and coefficients. Similar to transcription factors in nature, coefficients are 
numbers between zero and one, that scale an effect in proportion to the concentration of the signaling 
chemical to which they refer. 

2.6 Conditionals 
The conditional artificial genes are “veto” or “suppression” genes. These genes affect other genes only 
at the genome level, by turning actions

                                                      
1 This approach is somewhat different from a typical direct encoding approach, where the genetic operations 
alter the information in each cell that describes the cell. 

 off or on according to whether the conditional test is satisfied 
or not. 



2.7 Evolutionary Scheme 
The evolutionary scheme is derived from a genetic algorithm with four steps: evaluation, selection, 
crossover, and mutation, and each repetition is defined as one generation. The algorithm is initialized 
with a set of randomly generated genomes. Starting from a single artificial cell, one individual is 
grown from each genome by executing the rules it contains. The fitness of each individual is evaluated 
by means of the finite element analysis and the aggregation of additional properties, described below. 

2.8 Evaluation Scheme 
The evaluation scheme is based on an aggregation approach where several parameters which represent 
the performance of a phenotype are aggregated into a single scalar. Seven parameters are taken into 
account here: resonant frequency, mechanical stress, weight, shape of the cells, distance from the 
location of the load, age of the phenotype, and the maximum volume of a cell. The goal is to minimize 
the fitness value, thus lower fitness means better performance. Evaluation of an individual is 
performed only after the growth & development process is completed. The resonant frequency of the 
final structure is computed using the power method in order to save computational resources. The 
mass matrix M and the stiffness matrix K are constructed as part of the assembly process of the finite 
element scheme. The matrix A is defined in Equation 1 and has two dominant eigenvalues: minimum 
and maximum. The process of determining the lowest eigenvalue is performed using the recursive 
relation, shown in Equation 2 where x is a vector with initial values set to 1.0. Once the relation in 
Equation 2 has converged to the minimum resonant frequency, fmin is determined by equation 3. This 
process usually converges in 5 to 10 iterations which makes it highly efficient compared to a full 
eigenvalue solver. 

 

2.9 Genomre Execution Process 
In nature, the process by which cells express their DNA is stochastic with respect to time. Unlike 
computers where a central clock synchronizes logic operations, in nature, the expression of genes 
occurs with respect to conditions known as gene switches [32]. The gene switches create an 
asynchronous order in which genes are activated during the growth & development process. In the 
methods compared here, time is discretized into frames. At any instant of time during growth & 
development, a number of cells N exist and contain identical genomes, each with n words. The 
stochastic behavior of gene expression is mimicked by applying a Poisson process to the order of 
execution of the rules in each genome. 

3 RESULTS 
Two experiments were run, one for the fixed-mesh process and one for the growth & development 
process. In each experiment an initial population of 400 genomes was generated randomly. Genetic 
operations such as selection, mutation and crossover were performed at the genome level at the end of 
each generation. The desired height of the structure was 7 m, the external load was 106

At every generation the individual with the best performance survives into the next generation. Figure 
4 shows a comparison between the best fitness value in every generation for both processes. In both 
approaches, as can be seen in the figure, the best fitness value at each generation fluctuates from 

 N with random 
variation in direction over ±30, and the desired resonant frequency was 20 Hz. Cells were able to 
differentiate into three different types of material, each with different mechanical properties, as shown 
in Table 3. As mentioned above, the growth & development scheme includes all the types of rules, i.e., 
operations such as cell type and cell shape, while the fixed-mesh process excludes cell division 
operations and all operations that change cell geometry. 



generation to generation, even though the best individual survives into the next generation. The 
reasons for these types of fluctuations are that the variations in the environment and the random order 
of execution of rules within the genome cause variations in the growth & development of individuals. 
These two stochastic effects do not assure a constant fitness value even for the same genome. For 
example, a particular structure may support a load in a particular direction, but when the performance 
of the structure is evaluated for a load in a different direction, still within the expected range 
(illustrated in Figure 3), the structure may perform more poorly or may fail. The same is true for the 
genome execution process. A different order of execution of rules within a genome can give rise to 
different configurations, and therefore different performance. 
Figure 4 shows that the growth & development process converged to a solution after 380 generations 
while the fixed-mesh process converged to a solution after only 50 generations due to the much 
smaller size of the design space. However, the fluctuation of the fitness value had a higher variance in 
the fixed-mesh process. In other words, even though the growth & development process required more 
generations to converge to a solution, the performance of the result is more robust to variations in the 
environment and during growth and development. 

 
Figure 4. The fitness value of both processes as a function of generation. 

 
Figures 5 and 6 represent two phenotypes selected from the last two generations for both the growth & 
development and the fixed-mesh processes, respectively. The cells comprising the phenotype in 
Figure 5 have a range of shape, size and orientation while the cells in Figure 6 retain their fixed cell 
size over a fixed mesh grid. 
The phenotype generated from the growth & development scheme has a regular configuration with 
three regions along its length. Starting from a wide base at the bottom, transitioning into a mid-column 
in middle, and finally into a narrow column an the upper end. The mid- and the upper-column, all 
made from single cells with different volume and orientation, attach to each other along Z-direction. 
The base region contains more cells, attached to each other both in the Z and X directions. Figure 5 
shows the smooth transition between one region to another, which reduces stress concentration. The 
figure also illustrates that the structure is homogeneous and convex (no voids). The former 
characteristic indicates that the differentiation mechanism has not been utilized, promoting each one of 
the objectives (low stress, resonant frequency, etc.). 
Geometric symmetry can also be observed in this structure.  The structure is highly symmetric in the 
X-Z and Y-Z planes. This characteristic has been spontaneously synthesized without being part of the 
evolutionary fitness evaluation scheme. The two phenotypes, generated from the growth & 
development process, shown in Figure 5, are almost topologically identical. This indicates that the 
evolved genome is robust to both environmental effects (e.g., variations in load direction), and the 
random order of execution of its genes. 



The phenotype in Figure 6 comprises single size cells arranged on a fixed-mesh grid. The phenotype 
has been evolved with respect to the same objectives as the growth & development case, and has 
achieved a similar fitness value. Figure 6 shows that the structure is inhomogeneous, comprising 
different material type of cells. The structure also possesses a high degree of porosity. The 
combination of these characteristics enabled this particular structure meet the performance objectives, 
and attain a high fitness value. However, neither symmetry nor regularity is present in this structure. 
Also, the best phenotypes generated from the last two generations of the fixed-mesh process are 
topologically dissimilar. This type of dissimilarity indicates a lower level of robustness of the evolved 
genome, when compared to the best genomes evolved by the growth & development process, as 
shown in Figure 4. 
 

  

  
a b 
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Figure 5. Two phenotypes from the last two generations of the growth & development 
scheme with 20.15 and 20.07 Hz resonant frequency, respectively. a,b) Stress distribution 
over the cells. c,d) The material type of the cells, brown corresponds to material type #0, 

gray corresponds to material type #1. 
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Figure 6. Two phenotypes from the last two generations of the fixed-mesh scheme with 
19.87 and 19.75 Hz resonant frequency, respectively. a,b) Stress distribution over the cells. 
c,d) The material type of the cells, brown corresponds to material type #0, gray corresponds 

to material type #1. 



4 CONCLUSION 
Two design synthesis schemes: growth & development and fixed-mesh processes have been used to 
evolve the design configurations of three dimensional resonators with a multiple number of objectives: 
resonant frequency; mechanical stress; weight; and height. In both schemes, a genetic algorithm is 
used to alter and refine a genome that corresponds to each individual in a population. The growth & 
development process starts with a single cell which grows & develops into a mature phenotype 
following the execution of rules in its genome. The fixed-mesh process starts with a predefined 
volume of 100 cells which are either removed or change material type during the synthesis process. 
Both schemes achieved similar performance (aggregated fitness) with respect to the objectives. 
However, the topological characteristics of the phenotypes generated from each of the two processes 
were significantly different. 
The configurations synthesized by the growth & development process contain engineering 
characteristics such as symmetry, smoothness and regularity, while the configurations generated by the 
fixed-mesh process are non-symmetric with a high degree of non-smoothness, porosity and 
inhomogeneity. From a mathematical view, the space of solutions in the growth & development 
scheme is much larger than that of the fixed-mesh scheme. The former has an infinite number of 
solutions, since cells can be located and oriented anywhere in the medium while the latter has a finite 
number of configurations due to the fixed-mesh grid. Nevertheless, a solution has been achieved in 
both cases in a relatively small number of generations. This result indicates that the growth & 
development process (embryogenesis through the evolution of rules for growth and development to 
create a recipe shared by all cells) is a powerful method for synthesizing the design configuration of 
highly complex structures that must meet multiple, conflicting, performance goals. 

REFERENCES 
[1] Zwicky, F., Entdecken, Erfinden, Forschen im Morphologischen Weltbilt, Droemeer-Knaur, 

München, 1971. 
[2] Bendsøe, Martin P. and Sigmund, Ole. Topology Optimization: Theory, Methods and 

Applications. 2003, Springer-Verlag, Berlin, Heidelberg, 2nd

[3] Lipson, Hod and Pollack, Jordan B. Automatic design and manufacture of robotic lifeforms. 
Nature, August 2000, 406, pp. 974–978. 

 edition. 

[4] Pollack, Jordan B., Lipson, Hod, Hornby, Gregory, and Funes, Pablo. Three generations of 
automatically designed robots. Artificial Life, 2001, 7(3), pp. 215–223. 

[5] Zykov, Victor, Mytilinaios, Efstathios, Adams, Bryant, and Lipson, Hod. Self-reproducing 
machines. Nature, May 2005, 435, pp. 163–164. 

[6] Holland, John H. Adaptation in Natural and Artificial Systems. 1975, The University of Michigan 
Press, Ann Arbor, MI. 

[7] Ananthasuresh, G. K., Kota, Sridhar, and Kikuchi, Noboru. Strategies for systematic synthesis of 
compliant MEMS. In Proceedings of the 1994 Winter Annual Meeting, Volume DSC-Vol. 55-2, 
New York, 1994. ASME, pp. 677–686. 

[8] Lu, Kerr-Jia and Kota, Sridhar. Design of compliant mechanisms for morphing structural shapes. 
Journal of Intelligent Material Systems and Structures, June 2003, 14(6), pp. 379–391. 

[9] Lu, Kerr-Jia and Kota, Sridhar. Topology and dimensional synthesis of compliant mechanisms 
using discrete optimization. ASME Journal of Mechanical Design, September 2006, 128(5), pp. 
1080–1091. 

[10] Eggenberger, Peter. Evolving morphologies of simulated 3D organisms based on differential 
gene expression. In Husbands, Phil and Harvey, Inman, editors, Fourth European Conference on 
Artifical Life, pp. 205–213, (MIT Press), 1997. 

[11] Macready,William G., Siapas, Athanassios G., and Kauffman, Stuart A. Criticality and 
parallelism in combinatorial optimization. Science, January 1996, 271(5245), pp. 56–59. 

[12] Bentley, Peter J. and Kumar, Sanjeev. Three ways to grow designs: A comparison of 
embryogenies for an evolutionary design problem. In Banzhaf, Wolfgang, Daida, Jason, Eiben, 
Agoston E., Garzon, Max H., Honavar, Vasant, Jakiela, Mark, and Smith, Robert E., editors, 
Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, FL, 1999. 
(Morgan Kaufmann), pp. 35–43. 

[13] Kumar, Sanjeev and Bentley, Peter J. Implicit evolvability: An investigation into the evolvability 



of an embrogeny. In Proceedings of the Genetic and Evolutionary Computation Conference, Las 
Vegas, NV, 2000. (Morgan Kaufmann). 

[14] Kumar, Sanjeev and Bentley, Peter J. Computational embryology: Past, present and future. In 
Ghosh, Ashish and Tsutsui, Shigeyoshi, editors, Advances in Evolutionary Computing, Theory 
and Applications, pp. 461–478, (Springer-Verlag, New York), 2003. 

[15] Kumar, Sanjeev and Bentley, Peter J. On Growth, Form and Computers. 2003, Academic Press, 
New York. 

[16] Bowers, Christopher P. Evolving robust solutions with a computational embryogeny. In Rossiter, 
M. and Martin, T.P., editors, Proceedings of the UK Workshop on Computational Intelligence: 
UKCI-2003, Bristol, UK, 2003. (University of Bristol), pp. 181–188. 

[17] Bowers, Christopher P. Simulating evolution with a computational model of embryogeny: 
Obtaining robustness from evolved individuals. In Capcarrere, M. S., Freitas, A. A., Bentley, P. 
J., Johnson, C. G., and Timmons, J., editors, Advances in Artificial Life, Proceeding of the 8th

[18] Bowers, Christopher P. and Bullinaria, John A. Embryological modelling of the evolution of 
neural architecture. In Cangelosi, A., Bugmann, G., and Borisyuk, R., editors, Modeling 
Language, Cognition and Action, Singapore, 2005. (World Scientific), pp. 375–384. 

 
European Conference on Artificial Life: ECAL 2005. (Springer-Verlag), 2005, pp. 149–158. 

[19] Bowers, Christopher P. Simulating Evolution with a Computational Model of Embryogeny. PhD 
thesis, University of Birmingham, 2006. 

[20] Funes, Pablo and Pollack, Jordan. Computer evolution of buildable objects. In Husbands, Phil 
and Harvey, Inman, editors, Fourth European Conference on Artifical Life, pp. 358–367, (MIT 
Press), 1997. 

[21] Steiner, Till, Jin, Yaochu, and Sendhoff, Bernhard. A cellular model for the evolutionary 
development of lightweight material with an inner structure. In Keijzer, Maarten, editor, 
Proceedings of the 10th

[22] Bowers, Christopher P. Formation of modules in a computational model of embryogeny. In 
Proceedings of the 2005 Congress on Evolutionary Computation (CEC’05), Volume 1, 
Piscataway, NJ, September 2005. (IEEE Press), pp. 537–542. 

 annual conference on Genetic and Evolutionary Computation (GECCO 
’08), New York, NY, USA, 2008. (Association for Computing Machinery, ACM), pp. 851–858. 

[23] Lipson, Hod, Pollack, Jordan B., and Suh, Nam P. On the origin of modular variation. Evolution, 
August 2002, 56(8), pp. 1549–1556. 

[24] Kashtan, Nadav and Alon, Uri. Spontaneous evolution of modularity and network motifs. 
Proceedings of the National Academy of Sciences, September 2005, 102(39), pp. 13773–13778. 

[25] Yogev, Or, Shapiro, Andrew A., and Antonsson, Erik K. Computational Evolutionary 
Embryogeny. IEEE Transactions on Evolutionary Computation, April 2010, 14(2), pp. 301–325. 
Published Online: October 30, 2009. 

[26] Yogev, Or, Shapiro, Andrew A., and Antonsson, Erik K. Modularity and Symmetry in 
Computational Embryogeny. In GECCO 2008, Genetic and Evolutionary Computation 
Conference, Atlanta, GA, July 2008. 

[27] Yogev, Or and Antonsson, Erik K. A Novel Synthesis Design Approach for Continuous 
Inhomogeneous Structures. In 19th

[28] Yogev, Or and Antonsson, Erik K. Growth and Development of Continuous Structures. In 
GECCO 2007, Genetic and Evolutionary Computation Conference, London, UK, 2007. pp. 
1064–1065. 

 International Conference on Design Theory and Methodology 
(DTM). ASME, September 2007. Paper Number: DETC2007/DTM-35662. 

[29] Yogev, Or and Antonsson, Erik K. Evolution of Continuous Structures. In 16th

[30] Coen, Enrico, Rolland-Lagan, Anne-Ga¨elle, Matthews, Mark, Bangham, J. Andrew, and 
Prusinkiewicz, Przemyslaw. The genetics of geometry. Proceedings of the National Academy of 
Sciences, April 2004, 101(14), pp. 4728–4735. 

 International 
Conference on Engineering Design (ICED). The Design Society, August 2007. 

[31] Zienkiewicz, Olgierd C. and Taylor, Robert L. The Finite Element Method. 2005, Butterworth- 
Heinemann, Elsevier, Oxford, 6th

[32] Carroll, Sean B. Endless Forms Most Beautiful: The new science of evo devo and the making of 
the animal kingdom. 2005, W. W. Norton & Co. 

 edition. 

 



Contact: Erik K. Antonsson 
California Institute of Technology 
Department of Mechanical Engineering 
1200 E. California Blvd., Mail Code: 104-44 
Pasadena, CA  91125-4400 
USA 
Tel:  Int +1 626.395.3790 
Fax: Int +1 626.583.4963 
Email: erik.antonsson@caltech.edu 
URL: http://www.design.caltech.edu/ 
 


