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ABSTRACT 
Today, product development is dominated inter alia by a complex and interdisciplinary working 
environment. As a consequence, several problems come up: design engineers need a huge amount of 
knowledge to design high quality products, non-compliance with basic requirements and non-
compliance of products with different design guidelines like Design for X. One possibility to 
overcome these problems is the use of knowledge-based systems in engineering design. This paper 
follows a different approach: the use of an agent-based system in combination with a CAD System to 
support design engineers in the embodiment design phase. This system is some kind of agent-based 
design support system (MADS) called ProKon (Proactive Support of Design Engineering Processes 
with Agent-based Systems). Because of its novelty, this approach has to be investigated and several 
problems have to be tackled. Firstly, it is not clear in which way the MADS has to be built up. 
Secondly, there is no structured method for integrating engineering design knowledge into MADSs. 
Due to these two problems, there is no generic procedure for developing these MADSs. Answers 
regarding these problems will be given in this paper. 
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1 INTRODUCTION 

1.1 Motivation 
Currently, design engineers work in a complex and interdisciplinary working environment and need a 
huge amount of knowledge to design high quality products [1]. They have to consider a variety of 
relations between machine elements (e. g. shaft and hub) and take care of constraints concerning 
different design aspects, like functionality, manufacturing technology or costs. Even experienced 
design engineers fail to handle this complexity and the possibility of mistakes rises. For this reason, 
the amount of time for improvement and re-engineering of products rises too [2], [3]. While working 
on interdisciplinary products, design engineers have also to deal with different disciplines so that they 
have to gather a lot of information. This determines the amount of time for information research, 
assessment and transformation into the product development process [4], [5]. A further important 
aspect is the compliance of machine elements with basic requirements. To meet the given 
requirements for the development of a complex product is a challenge for design engineers in every 
phase of the product development process. A last problem is the low level of design according to 
certain “Design for X”-criteria (DfX). By raising this level, it is possible to increase the efficiency of 
product-related business units, e. g. manufacturing and assembly [6]. 
Accordingly, one possibility of meeting the problems named above is using knowledge-based systems 
(KBS). A characteristic feature of common KBS is the separation of knowledge bases from inference 
mechanisms. Therefore, knowledge engineers are able to change and maintain knowledge stored in 
knowledge bases without touching inference mechanisms [7]. Due to an increasing number of tasks 
the engineer has to deal with and the rising amount of knowledge he has to process, the support by 
common knowledge based systems is no longer sufficient. The goal is to have a design support system 
that proactively checks the CAD model while the engineer works on it. The system possesses 
knowledge about standards and other boundary conditions and monitors the CAD model. If the system 
detects a problem (e. g. the shaft-hub connection does not comply with the requirements), it interferes 
and informs the engineer about the problem. Furthermore, the system will try to find a solution 



regarding the problem which may consist of several geometrical and semantical adjustments, e. g. 
adjusting the diameter of a bearing surface. These adjustments are presented to the engineer and will 
be implemented automatically with the engineer’s acknowledgement.  
A first application scenario is the shaft-hub connection. It is a relatively simple example, but it allows 
the demonstration of all functions of the MADS. If, for example, a design engineer wants to modify an 
existing interference fit there are three fundamental possibilities: changing the material, changing the 
applied loads or changing the geometry. Although changing the material is the easiest way, it has the 
largest impact and should be handled with care. Changing the applied loads is difficult or impossible 
due to the specifications predefined by the customer. Most design engineers would change the 
geometry. In the first instance of this application scenario, the required torque could not be transferred 
by the interference fit. Furthermore, there are several geometric constraints, in which the design 
engineer has to search for solutions.  

1.2 Problem description and objectives 
Considering the previously discussed application scenario, the system has to monitor the shaft-hub 
connection represented as a CAD model while the design engineer revises the interference fit. 
Therefore, it must work autonomously without activation by the engineer. If problems are detected in 
the CAD model (e. g. the pressure between shaft and hub is too high, so that the material begins to 
yield), the system should interfere actively and thus needs an active behaviour. Due to the uniqueness 
of a design, the system should be able to deal flexibly with different problems. Furthermore, it needs a 
certain flexibility of the knowledge base so that the system can be extended with further knowledge, e. 
g. new technologies or standards. Finally, a design is characterised by many dependencies between 
and within single machine elements. Hence, the system has to handle complex problems where the 
dependencies on the created design are very specific and not predictable during the development of the 
support system. An example is the mutual dependency between shaft, hub, bearing, locking ring etc. In 
specific cases, this level of complexity could be too high for design engineers. Thus, the support 
system has to be developed generically.  
A possibility to meet these challenges is to use an agent-based system. Such systems are able to deal 
with the given complexity. An agent-based system also provides an active behaviour. Furthermore, 
these systems are very flexible so that they can be easily extended [8]. According to the presented 
functionality of the agent-based system, the following problems have to be solved: 
• Several agent-based systems exist in engineering design [9], automation technology, e-commerce 

etc. However, it is not clarified in which way agent-based systems have to be built-up to fulfil the 
suggested functionality in the domain of engineering design and CAD systems. 

• Agent-based systems are also knowledge-based systems and therefore knowledge-intensive and 
knowledge-sensitive. It is not yet clarified in which way agent-based systems process knowledge 
in the domain of engineering design and which knowledge representation mechanisms are 
necessary to represent engineering design knowledge. 

• Due to the last two problems, an overall procedure for developing MADS has to be developed. 
Certain objectives for the actual paper could be derived from these problems: 
• First, a generic procedure for developing this MADS is necessary to include all boundary 

conditions. This procedure should contain an agent model in which the agents are modelled and a 
knowledge model, in which the knowledge integration process is described methodically.  

• Second, it has to be investigated how a complex system in engineering design (interaction of 
several machine elements) has to be represented with agents. These agents could perform certain 
tasks and strive for results which are channelled within the agent model. 

• Thirdly, the previously mentioned knowledge model should contain a structured approach for 
integrating engineering design knowledge into MADSs. This model should be based on common 
structuring approaches in engineering design science and fundamentals of knowledge 
engineering. 

This paper gives solutions for the presented objectives. Therefore, it is structured as follows: The 
second section describes the fundamentals of software agents, because this topic is not widespread 
enough in the community of engineering design science. Afterwards, the overall development of the 
MADS as well as the specific models is presented in Section 3. The existing prototype is described in 
Section 4. A conclusion and an outlook can be found at the end.  



2 FUNDAMENTALS OF SOFTWARE AGENTS 
Due to a closer relationship to software engineering and informatics, the fundamentals of software 
agents are described in this section. Software agents are encapsulated (software) entities with defined 
objectives [8]. An agent tries to reach its objective by acting autonomously. It interacts with its 
environment and with other agents, while keeping a persistent state.  
It is able to plan and execute activities by itself and react on unpredictable situations by changing its 
plan. The internal structure of an agent is explained as follows [10]. As shown in Figure 1, an agent 
mainly consists of three knowledge elements: an internal model of its environment, its goals and its 
abilities.  

 
Figure 1. Internal structure of an agent 

The first element, the internal model of the environment, is the view of the agent to its environment. It 
contains information the agent gets from its environment. The internal model is updated every time the 
agent gets new information. The goals, as a second element, are the intentions of the agent, which they 
try to reach by using their abilities. These abilities, which are the third element of an agent, represent 
an agent’s possibilities to act. All these elements influence the behaviour of an agent or, more 
precisely, the agent determines its behaviour according to these elements. The agent itself is embedded 
within an environment. For example, this environment consists of the surrounding software system, 
including interfaces to other systems on the one hand and containing other agents on the other hand. 
An agent is able to interact with its environment by e.g. noticing changes or by manipulating objects 
of the environment. An agent monitors its environment, compares the environment with the goals and 
tries to manipulate it according to them. The possible interactions are limited to the agent’s abilities. 

3 RESULTS 
Solutions for the introduced objectives are shown in this section. After presenting the overall 
procedure for developing the agent-based design support system (MADS), the two key topics, the 
agent model and the knowledge model, are indicated. By modelling these two models, it is absolutely 
necessary to be aware of mutual dependencies between them. They are not only influencing each 
other, but also intertwined with each other.  

3.1 Overall procedure for developing MADS 
At the beginning of this project, it was very important to specify a methodical procedure for 
developing the whole system. In this case, specifying means doing a literature research and 
considering all related aspects like requirements, agent properties, properties of engineering design 
knowledge etc. There are many approaches for developing knowledge-based systems on the one hand 
[11-15] and agent-based systems regarding the knowledge engineering paradigm on the other hand 
[16], [17]. A fundamental idea is to combine these two approaches within one basic procedure. 
Furthermore, since the late eighties, the community distinguished between two aspects of knowledge 
engineering [7], [15]: the transfer view and the modelling view. In this project, the modelling view 
was used, because it was established for large knowledge bases and a hybrid representation 
mechanism (rule-based, frame-based, ontology-based). Thus, the transfer view is not efficient and 
effective enough. The overall procedure is shown in Figure 2. Basically, it is subdivided into the parts 
modelling and operating. Four models were identified. At first, the organisational structure of the 
company, in which the system has to be installed, will be considered in the requirement and 
organisation model which is leaned on the first model of CommonKADS [13]. It has to be clarified if 
there is a real need for a MADS and if so, which tasks should be assumed by the MADS. Afterwards, 
requirements have to be established. The agent model is dealing with the agents themselves (roles, 
goals, behaviours etc.), which is the micro-concept, and the cooperation/communication of the agents 
(macro-concept). Afterwards, the knowledge will be modelled within the knowledge model. 



Regarding Figure 2, it is important to consider what has been done in the other model. At last, the 
system as a whole should be modelled. This includes aggregating all previous models, setting up the 
interface to a CAD system and determining which hard- and software should be used etc.  

 
Figure 2. The overall procedure for developing agent-based design support systems 

After modelling of the system and elimination of all errors, the system can be operationalised with 
techniques from software engineering, expertise of CAD systems, respectively fundamentals of CAD 
and programming, of course. Operationalisation is not only implementing as it is more practical as 
modelling where the knowledge engineer has to take care of many interrelated and interdisciplinary 
aspects. In the next section, the two most important models, the agent model and the knowledge model, 
will be discussed.  

3.2 Agent model  
Multi-agent systems consist of several agents which are normally of different types and which follow 
certain objectives. The following sections describe tasks identified in the project and different agent 
types fulfilling them. 

3.2.1 Agent tasks 
The main goal of the MADS is to preserve the consistency of the CAD model. Assuming a consistent 
CAD model, inconsistencies may only occur after a change by the engineer. Therefore, the first task is 
to detect changes, such as changes of the requirements list or the CAD model itself. To detect 
differences, the corresponding objects are permanently compared to a reference. Having detected a 
change, other objects, which are constrained with the changed object, must be informed as their 
consistency might be affected too.  
Each time a change is detected, the CAD model must be checked. This task can be divided into several 
sub-tasks. The first sub-task is to coordinate the whole process of the check. This means, to initiate the 
check, delegate the execution and decide about the result. The second task is the execution of the 
check itself. This task is distributed to several agents as described in the next section. For the 
execution of the check, information about the CAD model, e.g. geometrical data, is needed. Therefore, 
this information must be provided by the agents. 
If the result of a check is negative, respectively, if inconsistencies exist, a solution for the detected 
problems must be found. This solution consists of adjustments of the CAD model, which have to be 
implemented to recover the consistency. One task is to coordinate the solution-finding process, which 
means delegating the execution as well as managing and evaluating the different solutions. The 
execution is distributed to several agents in the same way as the check of the CAD model. Due to the 
fact that a solution consists of several adjustments, they must be managed for each object of the CAD 
model and implemented in the CAD system after the approval of a certain solution.  

3.2.2 Agent types 
The agents of the system can be arranged in two main groups. The first group contains agents which 
are responsible for project-specific objects, like machine elements. The second group contains agents 
which follow common tasks and which are independent from a certain project, like checking the CAD 
model according to different rules. The agent types of these two groups are presented in detail in the 
following paragraphs. 
 
 



Object Agents (several types and instances): 
Every agent of the first group represents an object in the CAD model. These objects are single parts, 
connections between parts or assemblies, which are modelled in the CAD system. Each object is 
monitored by a corresponding agent. Therefore, Part Agents are responsible for parts, Connection 
Agents are responsible for connections and Assembly Agents are responsible for assemblies. Besides 
the geometric model in the CAD system, another project-specific object exists to monitor the 
requirement specification list. This list is represented by a Requirements List Agent. Figure 3 shows 
the responsibility of the agents, regarding the previously presented application scenario.  
 

 
Figure 3. Example for the responsibilities of the Object Agents 

All agents of this group have similar tasks and just differ slightly in the type of object they are 
responsible for. Hence, in the following sections, these agents are simply called object agents. The 
goals of these agents are detecting changes of the objects, providing information about the object, 
collecting adaptions of the object and implementing them into the CAD system.  
The second group consists of agents which have common tasks and represent the core of the system. 
An overview of these agents can be found in Figure 4. These agents apply the knowledge integrated 
into the system, consisting for example of rules and formulas. Hence, the agents of this group perform 
the check of the CAD model and retrieve solutions to problems they have found. The different types of 
agents are presented in the following. 
Management Agent (one instance): 
The first agent of this group is the Management Agent which has the task to coordinate the check as 
well as the solution-retrieving process. It is informed if a change in the CAD model is detected and it 
initiates the check of the CAD model. It delegates other agents of the group, called Aspect Agents, to 
perform the check of the whole CAD model or only parts of it. When those have finished, the 
Management Agent interprets the results. If problems in the geometric model exist, like parts that do 
not fit together, it starts the problem-solving process by delegating the Aspect Agents to solve the 
different problems. During the process, it collects and manages the retrieved adjustments and 
summarises them to solutions. If a solution is found, the Management Agent presents this solution to 
the design engineer and delegates the implementation of the adjustments to the corresponding agents, 
after having received the acknowledgement from the engineer. Otherwise the solution is discarded and 
the change by the engineer is rejected.  
Aspect Agent (several instances): 
Beside the Management Agent, this group contains Aspect Agents. Each of these agents is responsible 
for an aspect or a specific view on the CAD model. An aspect might be the functionality of the design, 
the used materials or the planned manufacturing technologies (i. e. Design for X-guidelines [6]). An 
Aspect Agent performs the check of the CAD model according to its aspect. Therefore, this type of 
agent possesses knowledge about its aspect in the form of rules and formulas. Having finished a check, 
the agent might be instructed to solve the problems it has found. It analyses the problem by retrieving 
the corresponding rules and formulas. Then it identifies the adjustable values and tries to adjust them 
in the right manner. Therefore, it requests the Object Agents, which are responsible for the 
corresponding value, to change it to the desired value. Additionally, they have to inform the 
Management Agent about the change.  
 
 



Specialist Agent (several instances): 
As already mentioned, the Aspect Agents possess knowledge about their aspect which could be very 
universal. Hence, they are supported by Specialist Agents. Specialist Agents are experts in certain 
cases, e.g. for the check of certain types of parts or certain types of connections between parts. They 
possess the specialised rules and formulas from standards or other sources. Therefore, they are able to 
provide detailed information for the Aspect Agents. In the same way, they have to support the Aspect 
Agents to adjust certain detailed values. Moreover, Specialist Agents have an approach similar to that 
of the Aspect Agents. A Specialist Agent analyses its rules and formulas and identifies adjustable 
values. After that, it requests the correspondent Object Agents to adjust the values and informs the 
Management Agent about the change.  
 

 
Figure 4. Communication between Object Agents and common agents 

The next section describes how the agents detect problems in the CAD model and how they retrieve 
solutions. 

3.2.3 Problem detection and solution process 
The detection of changes in the geometric model is done by the group of Object Agents. Taking the 
example of a single part, these are connections to other parts and the surrounding assembly. After 
having informed the involved agents, the original agent informs the Management Agent about the 
change as well (1, see Figure 5).  

 
Figure 5. Problem Detection Process 

The Management Agent determines all Object Agents whose objects have been changed or might be 
affected by a change and requests all Aspect Agents to check the changed objects (2, see Figure 5). 
The Aspect Agents determine the type of the object, e.g. single part, connection or assembly, and 
apply their corresponding rules by supplying them with data from the object. They request the needed 
data, e.g. geometrical information or the used material, from the Object Agents (3). The Object Agent 
determines the desired information in its internal model of the object and sends it back to the 
requesting Aspect Agent (4). Since the Aspect Agents only possess common rules, the information 
they get from the Object Agents is not sufficient in most cases. They have to request support from the 



Specialist Agents. Therefore, they retrieve the corresponding specialist and request the specialised 
information from the responsible Specialist Agent (5).  
The Specialist Agent is able to generate the desired information by using its specialised rules and 
formulas, applying the data it requests from the Object Agents (6, 7). 
Having collected all information, the Specialist Agent is able to generate the desired information for 
the requesting Aspect Agent and answers to its request (8). After this support, the Aspect Agent is able 
to proceed with the check and informs the Management Agent about the results of the check (9). 
Therefore, it attests the correctness of the CAD model according to its aspect or provides a list of 
problems, respectively rules, which are not fulfilled. The Management Agent collects the results of all 
aspects and of every changed object to interpret them.  
Having all results, the Management Agent has to evaluate the existing problems in the CAD model 
and starts the problem-solving process (see Figure 6). Therefore, it instructs the Aspect Agents to 
solve their reported problems (10).  

 
Figure 6. Problem Solution Process 

The Aspect Agent analyses the problems and links them with the rules which were not fulfilled. For 
each rule, it determines why it was not fulfilled. Normally a rule is not fulfilled if a variable has not 
the desired value. In this case the agent has to determine what could be done in order to change the 
value. Therefore, it has to know where the value comes from. If it was calculated by using the aspects 
formulas, it analyses the corresponding formula for adjustable variables. These adjustable variables, 
respectively their values, might be the result of further formulas which have to be analysed 
recursively. At the end of this analysis, the Aspect Agent has a list of all variables that can be adjusted 
in order to change the resulting value and to fulfil the broken rule. Having this list, it will change the 
variables to solve the problem. Some of these variables may be linked directly with a value of the 
CAD model. In this case the Aspect Agent requests the corresponding Object Agent to adjust the value 
(11, see Figure 6). If the variable stems from a Specialist Agent, the Aspect Agent requests that agent 
to adjust the value (13) and waits for the confirmation (16).  
An Object Agent is able to change the value, e.g. a geometrical dimension, directly by editing the 
object it is responsible for. A Specialist Agent may have calculated the value using one of its formulas 
and has to analyse the formula the same way an Aspect Agent does. It identifies the adjustable 
variables and requests the corresponding agents to adjust them (14). No matter how many steps are 
necessary to retrieve the adjustable variables, at the end, the Object Agents must take the 
responsibility because they possess the project-specific data which is the only data that can be 
changed. If one of these agents is requested to adjust such a variable, it changes the value of that 
variable in its internal model concerning the CAD model. The model in the CAD system stays 
unchanged at that moment. Using this proceeding, the agents are able to try different solutions without 
affecting the real CAD model.  
It is important to report each adjustment of a variable to the Management Agent (12, 15) so that this 
agent is able to manage different solutions. If all problems collected by the Management Agent are 
processed (17), the first iteration has finished and the agent launches another check of the CAD model. 
This check, which is needed to verify the problem solution of the agents, is carried out as described 



above. If problems are still found, the solution process is repeated until there are no more problems. If 
some problems cannot be solved by the agents on their own and if the process will result in an infinite 
loop, the Management Agent aborts the process and informs the design engineer about the situation. 
Provided with the current problems in the CAD model, he is able to fix them with less effort than 
without the support of the agents. If the agents have found a solution and are able to fix the CAD 
model, the Management Agent presents the solution, respectively the adjustments, to the design 
engineer. He can have a look at the solution and make further changes or accept it without changes. If 
he accepts the solution, the Management Agent instructs all Object Agents, to implement the 
adjustments into the CAD system. By automating the implementation of the adjustments, the effort for 
the design engineer is reduced. The result of the described process is a CAD model which is checked 
according to different aspects and requirements. A further change by the design engineer will restart 
the process.  
This section was dealing with agent tasks and types and how they detect problems. To detect 
problems, agents need knowledge in form of formulas and rules etc. At the end of this section, the 
question is, how can this knowledge be implemented in a structured and methodical way? The answer 
is given in the next section. 

3.3 The knowledge model 
Based on the agent model, which was discussed in the previous section, this section describes how 
engineering design knowledge has to be modelled and operationalised in a methodical way to get a 
functional MADS. In detail, it serves as a guideline for knowledge engineers and has a prescriptive 
character. Every step is predetermined and has to be adapted to the given facts in each case. As 
described in Section 3.1, the modelling view is used and therefore, the knowledge has to be modelled 
holistically. If there are no redundancies, overlaps and inconsistencies within this first phase, the 
whole MADS can be operationalised (knowledge + agents + communication + architecture). An 
important aspect is to build-up this knowledge model in a generic way so that it can be used in 
combination with every agent-based approach in engineering design and not only in this particular 
project. 
In detail, the knowledge model is based on the structuring approach by Roth [18] and on the common 
steps of knowledge acquisition (knowledge elicitation, knowledge analysis, knowledge 
representation). Figure 7 presents the final knowledge model within this project. The agent model 
appeared to be the only input with certain information: micro-concept (classes of agents with roles, 
goals, behaviours etc., cf. Section 3.2.1 and Section 3.2.2) and the macro-concept (communication 
between agents, collaboration and cooperation, cf. Section 3.2.3).  

 
Figure 7. The final knowledge model within the ProKon-project 



After that, four different phases have to be processed by the knowledge engineer. The outcome of 
every phase is a set of results. These results are symbolised by a database symbol below every phase 
(see Figure 7). The overall result of this knowledge model is a formal representation of the 
engineering design knowledge. This formalised knowledge has to be operationalised within the next 
steps. Subsequently, a brief description of the each phase follows.  

3.3.1 Knowledge structuring 
In this phase, a knowledge concept has to be processed. At first, the knowledge engineer turns the 
results of the agent model into a knowledge allocation which shows what knowledge is suitable for a 
particular type of agent. For example, aspect agents need knowledge about certain aspects in design, e. 
g. guidelines in embodiment design. After that, the structuring approach follows. The goal of this step 
is to consider the roles of a particular agent and to assign a set of knowledge characteristics to them, 
which are described by the structuring approach. In this way, it is possible to combine an agent-role 
with one knowledge type, several knowledge forms, several locations of knowledge, one knowledge 
character and a probabilistic quality of knowledge. For example, the aspect agent for manufacturing 
design needs detailed knowledge about the production of certain parts (knowledge type: goal 
knowledge). This knowledge is built up through rules, facts and information in tables (knowledge 
forms: rules, attributes, relations, values and tables). Furthermore, this knowledge can be found in a 
general manner in standards and books (location of knowledge: standards and books  character of 
knowledge: explicit). 
The quality of the knowledge is probably correct. In total, four knowledge types, twenty knowledge 
forms and eight locations of knowledge were identified. In turn, the four general knowledge types can 
be subdivided into several subtypes, e. g. goal knowledge  expert knowledge, experience 
knowledge, product knowledge etc. 

3.3.2 Knowledge elicitation 
At first, based on the results of the previous phase, the knowledge engineer has to identify the 
locations of knowledge in detail. So, he has to consider the structuring approach with the 
characteristics of the knowledge and find out certain explicit and implicit knowledge. A structuring of 
the single locations follows. After that, depending on the character of knowledge, it is important to 
make a distinction between explicit and implicit knowledge in the remaining process. Explicit 
knowledge (that means, only information which is written down) could be externalised by extraction. 
Apart from that, implicit knowledge could only be externalised by interviews. So, experts have to be 
interviewed by knowledge engineers in certain ways: open interviews, guided interviews and 
structured interviews [19]. The difficulty is to choose carefully between these three options, use one or 
more options correctly regarding available experts, respectively regarding order, and being sensitive 
when dealing with experts. One issue is that experts mostly do not know what they know and, 
furthermore, they cannot externalise the knowledge in the way the knowledge engineer wants it. 
Executing interviews is much harder than extracting explicit knowledge, but it is necessary to get a 
holistic view on the knowledge domain. The elicited knowledge has to be prepared and filled into a 
database. In this project, a tool for the management of literature was used. This solution works very 
well in this project and more than thousand knowledge elements about shaft-hub connection, 
engineering design in general and basics in mechanics, respectively mathematics, were elicited. 

3.3.3 Knowledge analysis 
Considering the knowledge database, first the knowledge engineer arranges terms and concepts by 
using a semantic network. The advantage of this is a general overview of the knowledge domain. All 
terms have to be connected with standardised relations which are typical for semantic networks, e. g. 
isA, isPartOf, consistsOf, hasFunction, hasProperty, hasBehaviour etc. Important is that the 
knowledge engineers have to choose between these relations and do not create a huge set on his/her 
own. This fact leads to a more standardised view which is much easier at the beginning. Several good 
experiences with this procedure have been made within the project. Second, the knowledge is 
analysed, arranged and represented informally using the so called ProKon-knowledge-forms (PKF). 
These are leaned on the ICARE-forms by Stokes [10] and analyse, arrange and represent knowledge 
with the help of the structuring approach. A total of seven different forms were established: entity, 



name, table, formula, rule, condition and image. With these seven forms, it is possible to analyse every 
knowledge element in engineering design.  

3.3.4 Knowledge representation 
The last phase is about representing the analysed engineering design knowledge formally. First, based 
on the PKF name and entity, a meta-ontology has to be established. This step is very important, 
because an ontology might be very efficient and effective if the foundation is defined well. In addition, 
an agent-based system needs an ontology for communication and cooperation aspects. In this project, 
two main super classes were defined: concept and synonym. The reason behind that distinction is that 
most concepts (e. g. arise) have a synonym (e. g. occur). Below the super class concept, several classes 
were identified: design element, property, function etc. It is only now that instances occur instead of 
classes. With predefined relations in the entity-form, it is possible to connect two instances; e. g. 
Inference fit - hasFunction - transfer of torque and axial force. Afterwards, the whole ontology has to 
be filled with knowledge from the PKF. At last, the non-ontological knowledge should be represented 
formally. At this point, it is important to push the limit regarding the level of formalisation, because 
the higher the level, the easier it is for the operationalisation.  
After describing the overall procedure of how to develop a MADS with the agent model and the 
knowledge model, the next section shows how the prototype was built (operationalisation of the agent 
model and knowledge model) and which results were achieved.  

4   PROTOTYPE 
The ideas presented in this paper were realized in a prototype. The prototype is based on Java by 
means of the multi-agent platform JADE. It consists of 19 functional agents which represent three 
aspects (design for functionality, design for economical use of materials, design to cost) and six 
specialists (interference fit, key fit etc.). The simplified CAD system contains an assembly with an 
interference fit, another with a key fit and a requirements list. At the current state, the prototype 
comprises about 20 rules and 30 formulas. Furthermore, it contains a database for material 
information. With this implemented knowledge, the MADS is able to detect geometrical and material 
changes as well as changes concerning applied loads in the CAD model and check it for 
inconsistencies. It is also able to find a solution for detected inconsistencies, present them to the 
engineer and implement them. In Figure 8, the screenshot on the left hand side shows the simplified 
CAD system including the resulting adjustments for a change. On the right, an extract of the agents’ 
communication is shown, logged by a sniffer agent (cf. Figure 5 and Figure 6). Assuming that the 
designer changes the geometry of the shaft of the included interference fit, the agents detect that 
change and check the CAD model. The aspect agents report some emerged problems to the 
management agent. This agent instructs them to solve the problems and then initiates a check again. 
After a few iterations no more inconsistencies exist and the Management Agent reports the needed 
adjustments of the CAD model to the designer as shown in Figure 8. By accepting these adjustments, 
the designer delegates certain Object Agents to implement them. After that, the consistency of the 
CAD model is recovered. 

 
Figure 8. Screenshot of the prototype and the agent sniffer 



Regarding the previously discussed application scenario, the prototype is in the position to detect that 
the geometry and/or the material is not suitable for transferring the torque from the shaft to the hub or 
vice versa. In Figure 8, this application scenario was processed. For this inconsistent interference fit, 
solutions were presented to the design engineer. In parallel, solutions for an equally possible key fit 
are presented in Figure 8 as well so that the design engineer is able to choose between these two 
eventualities. In this application scenario, several basic and special rules for interference fits and key 
fits were processed. A valid solution should fulfil every rule. For example, a rule for guaranteeing that 
the hub does not drift from the shaft is included. This involves also the fact that this rule is only 
applicable in combination with rotary and alternating bending moments.  
At the moment, this prototype is using a hybrid problem-solving method (PSM). It combines a random 
walk approach with a gradient algorithm. Concerning the groove length of an interference fit, which 
has an impact on the calculation of the transferred torque, this length will at first be changed by a 
random value in a prescribed direction. Second, if this direction is correct, which could be verified by 
the gradient-algorithm, the groove length will be changed again until the prescribed torque is reached. 
This PSM works well with a small number of rules to be checked. But, if this number increases, 
solutions are not guaranteed anymore. Probably, the use of a more efficient PSM is better for these 
specifications.  

5 CONCLUSION AND FUTURE WORK 
This paper presents an approach for supporting design engineers within the embodiment design with 
an agent-based design support system (MADS). All three introductorily mentioned problems were 
tackled and discussed in this paper. Concerning the core of the agent model, it was important to align 
the structure of the agents on design guidelines. That means that every aspect agent is responsible for 
the compliance of a specific design guideline, e. g. agent for design for manufacturing. Apart from 
that, the specialist agents are dealing with delimited fields of interest, e. g. knowledge about designing 
an interference fit. This is the reason why the structure is modular and could be enhanced for new 
design guidelines and machine elements. Thus, it is possible to transfer this agent approach to further 
applications in mechanical and electrical engineering, because design guidelines and system elements 
occur in any field. Therefore, it is not always necessary to connect the MADS to a CAD system. 
Furthermore, the knowledge model, which is based on the fundamentals of knowledge engineering 
and on the fundamentals in engineering design knowledge, was presented. After a structuring 
approach, the three typical stages of knowledge acquisition followed. In the stage of knowledge 
elicitation, it is possible to deal with implicit and explicit knowledge as well. This opens up the 
applicability to all imaginable knowledge domains, not only the domain of interference fits. The stage 
of knowledge analysis is the most important stage. Knowledge engineers can get a holistic view on the 
knowledge domain, on the one hand, and are able to structure the knowledge in an informal way to an 
easy integration on the other hand. Furthermore, characteristics of agent-based systems are integrated 
as well. In the last stage, an ontology is predefined with a meta-model and filled within the next step. 
In summary, this knowledge model is agent-oriented, but flexible enough for applying single stages by 
itself, and transferred to other problems. To sum up, it can be said that all postulated problems are 
tackled. Only the connection to the CAD system is challenging. In the future, beside this connection 
problem, a user-friendly and user-defined knowledge acquisition component will be developed. 
Therefore, design engineers will be able to integrate missing knowledge on their own. This is an 
important step to make this MADS applicable in industry and research.  
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