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ABSTRACT 
Design-by-analogy is a powerful method for innovation, particularly during conceptual ideation, but 
also carries the risk of negative design outcomes (e.g., design fixation, risk aversion), depending on 
key properties of analogies used. This paper examines how variations in analogical distance, 
commonness, and representation modality influence the effects of analogies on conceptual ideation. 
Participants in this study generated ideas for an engineering design problem with or without analogous 
example designs drawn from the U.S. Patent database. Examples were crossed by analogical distance 
(near-field vs. far-field), commonness (more vs. less-common), and modality (picture vs. text). For 
comparison, a control group generated ideas without examples. Effects were examined on a mixture of 
ideation process and product variables. The results show positive effects of far-field and less-common 
examples for novelty and quality of ideas; also, the combination of far-field, less-common examples 
increased novelty relative to control. These findings suggest guidelines for the effective use of design-
by-analogy, particularly a focus on far-field, less-common examples during conceptual ideation. 
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1 INTRODUCTION  
Design-by-analogy has been shown to be a powerful tool for fostering innovation in engineering 
design [1-3], particularly during conceptual design, where design concepts are created either 
intuitively or through systematic processes. Analogy is a mapping of knowledge from one domain to 
another enabled by a supporting system of relations or representations between situations [3]. This 
process of comparison between situations fosters new inferences and promotes construing problems in 
new insightful ways; this in turn can be harnessed by designers to fuel innovative designs.  

An illustrative and oft-cited example is George Mestral’s invention of Velcro by analogy to 
burdock root seeds. The engineering design community has recognized the potential of design-by-
analogy and developed a number of methods to utilize analogy within the design process; some 
examples include Synectics [5] – group design through analogy types; French’s work on inspiration 
from nature [6]; Biomimetic concept generation [7] – a systematic tool to index biological phenomena 
that links to textbook information; the WordTree Method – a search hypernym and troponym search 
for analogies and analogous domains [8]; and analogous design using the Function and Flow Basis [9] 
– analogous and non-obvious product exploration using the functional and flow basis. These methods 
have been used with some success. However, fundamental questions surround the proper design and 
implementation of design-by-analogy methods. 

It has been shown that exposure to analogous designs can result in lower levels of divergent 
ideation [10], and even inadvertent transfer of negative design elements [11]. These findings 
demonstrate that analogies, if not chosen or used well, can hinder rather than facilitate innovation; 
thus, understanding what makes for inspirational analogies is extremely important in order to 
effectively harness the power of design-by-analogy. To address this important gap in the literature, this 
paper examines the question of what characteristics of analogies, relative to the design problem, are 
most effective to improve ideation. 

 



 
2 BACKGROUND 
2.1. Analogical distance 
Based on the psychological literature on analogy and problem-solving, analogical distance appears to 
be a key variable to consider. This variable can be conceptualized as ranging over a continuum from 
far-field (a different problem domain) to near-field (the same or very similar problem domain). 
Historical accounts of creative discoveries and inventions have often highlighted the potential of far-
field analogies for creative insights, including George Mestral’s invention of Velcro via analogy to 
burdock root seeds, and Niels Bohr’s discovery of the structure of atoms via analogy to the solar 
system. Some cognitive studies in design have been similarly suggestive. For instance, the number of 
far-field analogies used by designers during ideation has been positively related to the originality of 
proposed solutions, as rated by a sample of potential customers [12]. Further, exposure to far-field 
design examples increase idea novelty relative to using no examples, and exposure to near-field 
examples decreases the variety of ideas generated relative to far-field examples [13].  

On the other hand, far-field analogies can be difficult to retrieve from memory [14] or notice as 
relevant to one’s target problem [15]. In addition, some investigators have disputed the privileged role 
of far-field analogies in prominent inventions and discoveries [16]. As such, it is possible that far-field 
analogies might result in some negative design outcomes. One way to tease apart possible ways in 
which far-field and near-field analogies might help or hinder designers is to use multiple measures of 
ideation processes, including novelty and variety of ideas, as well as average quality and variance in 
idea quality. An initial testable hypothesis is that providing far-field examples would allow one to 
generate more novel ideas relative to near-field or no examples. 
 
2.2 Commonness  
Another potential variable of interest is how common the analogous designs are found in designers’ 
worlds. The commonness of a design increases the probability that a designer would have had prior 
exposure and/or experience with the design. This prior experience might influence the designer’s 
ability to flexibly re-represent and use the design and combine it with other concepts in a novel 
fashion. This potential relationship between prior experience and flexibility of use is related to the 
psychological phenomenon of “functional fixedness,” where individuals have difficulty seeing unusual 
alternative uses for common artifacts. For instance, in Duncker’s [17] classic candle problem, the task 
is to fix a lighted candle on a wall in such a way that the candle wax will not drip onto a table below, 
and the given materials are a candle, a book of matches and a box of thumb-tacks. One correct solution 
involves emptying the box of tacks and using it as a platform for the candle; however, this solution 
eludes most solvers because it requires the unconventional use of the box as a platform. In fact, when 
the box is presented to solvers empty with the tacks beside it, solvers are much more likely to find the 
unusual solution [18]. Similarly, in Maier’s [19] two string problem, where the task is to tie two 
strings together that are hanging from the ceiling just out of arm’s reach from each other using various 
objects available (e.g., a chair, a pair of pliers, etc.), people often fail to recognize the solution of tying 
the pair of pliers to one string, swinging it like a pendulum, and catching it while standing on a chair 
between the strings.  

Another potentially relevant finding in the psychological literature is that individuals who acquire 
experience with classes of information and procedures tend to represent them in relatively large, 
holistic “chunks” in memory, organized by deep functional and relational principles [20-21]. This 
ability to “chunk” supports expertise in routine, well-structured tasks [20], but might become a 
hindrance in tasks that require perceiving or representing information in novel ways (e.g., creative 
design), particularly if processing of component parts of the information chunks helps with re-
representation [22].  

These findings suggest that prior experience with analogous designs might hinder designers’ 
ability to use those designs to fuel innovation. This leads to a hypothesis that less-common example 
designs, which designers are less likely to have been exposed to, might be more likely to support 
multiple interpretations, and thus facilitate broader search through the space of possible solutions, 
which might in addition increase the novelty of solutions.  
 
2.3 Summary 



Overall, the literature suggests that investigating variations in example analogical distance and 
commonness might shed some important light on the questions regarding what to analogize over. Prior 
work suggests hypotheses favoring far-field over near-field examples and less-common over more-
common examples. Additionally, the theoretical and empirical literature suggest that there might be 
different effects of example analogical distance and commonness along different dimensions of the 
ideation process, thus motivating a fine-grained analytic approach to ensure that the effects of these 
variables can be clearly understood.  
 
3 EXPERIMENTAL METHODS 
3.1 Design  
To investigate the effects of example analogical distance and commonness on conceptual design 
processes, we conducted a 2 (distance: far-field vs. near-field) x 2 (commonness: more common vs. 
less common) x 2 (modality: pictures vs. text) factorial experiment. The modality factor was included 
to control for specificity of effects to particular representation formats. In the experiment, participants, 
senior-level engineering students, were given a real-world design problem and were asked to generate 
solution concepts first briefly without examples, such that they understood the problem, and then with 
examples, to evaluate the effects of examples on problem solving. To establish whether examples of 
different types enabled or hindered problem solving, a control group of students executed a similar 
procedure but received no examples.  
 
3.2 Participants 
Participants were 153 students enrolled at two research universities in the U.S. 87% were 
undergraduate engineering students (95% Mechanical Engineering, 5% Electrical Engineering and 
others) and 13% Masters students in design-related disciplines (e.g., product development, business 
administration). Participants ranged from 20 to 38 years in age (M = 22, SD = 1.89), and were mostly 
male (~70%). Most participants had relevant mechanical engineering domain knowledge and design 
experience: 66% had at least 1-6 months of engineering internship experience, 82% had taken at least 
one course where a structured approach to design was taught, and 99% had experience with at least 
one prior design project in their engineering curriculum. Participants were recruited from classes and 
were given either extra credit or $15 for their participation. 
 We randomly assigned participants to one of the nine possible conditions in each class by 
distributing folders of paper materials prior to students arriving in class. The obtained distribution of 
participants across the eight analogy conditions is shown in Table 1 (24 students were assigned to the 
control condition)—the sample populations, Ns, are unequal not because of dropout, but rather from 
stochasticity in where students chose to sit down. With these sample populations, statistical power for 
detecting three-way interactions (not our theoretical goal) is modest, but power for detecting two-way 
interactions and main effects is good. 
 

Table 1: Distribution of participants across analogy conditions 
 Near-Field Far-Field 

More Common Less Common More Common Less Common 
Picture 13 17 15 16 
Text 17 16 16 17 

 
3.3 Design problem 
The design problem was to design a low cost, easy to manufacture, and portable device to collect 
energy from human motion for use in developing and impoverished rural communities, e.g., rural 
India, many African countries. This design problem was selected to be meaningful and challenging to 
our participants. The problem was meaningful in the sense that real-world engineering firms are 
seeking solutions to this problem and the problem involves social value; thus, students would be 
appropriately engaged during the task. The problem was challenging in the sense that a dominant or 
accepted set of solutions to the problem has yet to be developed (so students would not simply retrieve 
past solutions), but it was not so complex as to be a hopeless task requiring a large design team and 
very detailed task analysis.  
 
3.4 Selection of examples 



Examples were patents retrieved from the U.S. Patent Database using keyword search on the U.S. 
Patent and Trademark Office website. Keywords were basic physical principles, such as induction, 
heat transfer, potential energy, as well as larger categorical terms like mechanical energy. The final 
set of eight patents was selected by two PhD-level faculty and one Ph.D candidate in mechanical 
engineering based on two sets of criteria: (1) balanced crossing of the analogical distance and 
commonness factors, such that there would be two patents in each of the four possible combinations, 
and (2) overall applicability to the design problem, over and above analogical distance and 
commonness. Each participant in the analogy conditions received two examples of a particular type, 
roughly balanced across conditions for applicability. The patents for each of the conditions are shown 
in Table 2. 

With respect to the first set of criteria, in selecting for analogical distance, far-field patents were 
devices judged to not be directly for the purpose of generating electricity, while near-field patents 
were those judged to be directly for the purpose of generating electricity. In selecting for commonness, 
more-common patents were devices judged likely to be encountered by our target population in their 
standard engineering curriculum and/or everyday life, while less-common patents were those judged 
unlikely to be seen previously by the participants under typical circumstances. 
 

Table 2: Patents for each condition 

 Near-Field Far-Field 

More 
Common 

-Waterwheel-driven generating 
assembly (6208037) 
-Recovery of geothermal energy 
(4030549) 

-Escapement mechanism for 
pendulum clocks (4139981) 
-Induction loop vehicle detector 
(4568937) 

Less 
Common 

-Apparatus for producing electrical 
energy from ocean waves (4266143) 
-Freeway power generator 
(4247785) 

-Accelerometer (4335611) 
-Earthquake isolation floor 
(4402483)  

 
With respect to the modality factor, in the picture conditions, participants received a representative 

first figure from the patent, which typically provides a good overview of the device, while in the text 
conditions, participants received the patent abstract. To provide some foundational context, all text-
and-picture-condition participants also received the patent title.  
 
3.5 Experimental procedure 
The experiments were conducted during class. Participants generated solution concepts in three 
phases, using a sequence of envelopes to carefully control timing of the task and exposure to examples 
across conditions. In particular, we wanted to ensure that design examples were received only after 
participants had made some substantial progress in ideation, since prior work has shown that examples 
and potential analogies are most helpful when received after ideation has already begun [23]. The 
overall time allowed for this task was sufficient to allow for broad exploration of the concept space, 
but not enough to develop particular ideas in depth, matching our focus on the ideation process. 

Analogy and control groups executed the same overall sequence, but differed in the particular 
activities in the second phase of ideation. For the analogy groups, the sequence of phases was: (1) read 
design problem and generate solution concepts (10 minutes), (2) review two patents and write/draw 
solutions or ideas that come to mind when looking at the patents (10 minutes), (3) generate more 
solution concepts for the design problem (10 minutes), and (4) complete a brief design experience and 
demographics survey. For the control group, the sequence of phases was: (1) read design problem and 
generate solution concepts, (2) generate more concepts, (3) generate more concepts again, and (4) 
complete the design experience/demographics survey.  

Participants were instructed to generate and record as many solution concepts to the design 
problem as they could, including novel and experimental ones, using words and/or sketches to 
describe their solution concepts.  
 
4 IDEATION METRICS 



The experiment generated 1,321 total ideas. To thoroughly explore the range of effects of distance and 
commonness, we applied a range of ideation metrics to these ideas: (1) the extent to which solution 
features were transferred from examples, (2) quantity of ideation, (3) breadth of search through the 
space of possible solutions, (4) quality of solution concepts, and (5) novelty of solution concepts. The 
first three metrics provided measures of the ideation process of participants and how they are 
processing the examples: examining solution transfer provides insight into the mechanisms by which 
designers might be stimulated by the examples, e.g., did they actually use solution elements; quantity 
of ideation measures how participants are exploring the design space, e.g., generating/refining a few 
ideas vs. exploring multiple concepts, which is associated with higher likelihood of generating high-
quality concepts [24]; finally, breadth of search provides a measure of the ability to generate a wide 
variety of ideas, which is associated with the ability to restructure problems, an important component 
of creative ability [25], The final two metrics focus on the ideation products of participants. We 
investigate quality because in design, a baseline requirement is that concepts must meet customer 
specifications. We investigate novelty because there is a high degree of consensus in the literature that 
creative products are at least novel [26, 27].  
 
4.1 Data pre-processing 
The raw output of each participant was in the form of sketches and/or verbal descriptions of concepts. 
Examples of participant-generated solution concepts are shown in Fig. 2. A number of pre-processing 
steps were necessary to prepare the data for coding and analysis.  
 

 
Figure 2: Example participant solution concepts. 

 
First, each participant’s raw output was segmented by a trained coder into solution concepts. A 

sketch and/or verbal description was segmented as one solution concept if it was judged to describe 
one distinct solution to the design problem. Variations of solutions (e.g., with minor modifications) 
were counted as distinct solution concepts. Segmentation was independently checked by a second 
coder. Inter-rater agreement was high (96%), and all disagreements were resolved by discussion. Next, 
sets of two senior mechanical engineering students rated each solution concept as meeting or not 
meeting the minimum constraints of the design problem, as described above, to remove off-topic 
inspirations generated by the patent examples, especially in the second phase. Inter-rater agreement 
was acceptable, with an average Cohen’s kappa of 0.72. All disagreements were resolved through 
discussion. The 1,066 solution concepts remaining after pre-processing constituted the final data set 
for analysis. 
 
4.2 Solution transfer 
Solution transfer was defined as the degree to which a given participant’s idea set contains solution 
features from the examples s/he received, adjusted for baseline occurrence of those solution features. 
Key features were generated by one of the co-authors for each of the eight patent examples in the 2 x 2 
distance by commonness matrix, and the list was cross-checked for relevance by the other co-authors. 
A total of 39 key features were identified. Each example was associated with between 4 to 7 features 
(M = 4.9, SD = 1.0). Solution concepts were coded for the presence or absence of each of the 39 
features. The first 50% of solution concepts was double-coded by two senior mechanical engineering 
students to establish reliability. Later, all coding was completed by one student only. Test-retest 
measures of reliability were obtained in lieu of inter-rater reliabilities. Cohen’s kappa averaged across 
features was 0.57. Because some features overlapped across examples (e.g., “built into ground, 
stationary, or permanent” was associated with 4 patent examples), there was not a simple one-to-one 
mapping of features to examples. To reduce spurious effects from features with low reliability or high 



overlap across examples, the initial set of 39 features was filtered down to 23 such that the remaining 
features: 1) had acceptable inter-rater agreement, i.e., Cohen’s kappa greater than 0.4, 2) were not 
shared by more than three examples, and 3) were not too common, i.e., base rate (collapsed across 
conditions) less than 0.5. After filtering, the number of features ranged from 1 to 5 (M = 2.9, SD = 1.4) 
per example and 4 to 8 (M = 5.8, SD = 1.7) per each of the four conditions in the distance by 
commonness 2 x 2 design. Cohen’s kappa averaged across filtered features was 0.66.  

Solution transfer scores for each participant were computed as follows. First, for each cell in the 2 
x 2 (distance x commonness) matrix, we computed for each participant the proportion of his/her ideas 
that had at least one solution feature from that cell. Next, this proportion was converted into a 
standardized z-score by subtracting the mean and dividing by the standard deviation of proportion 
scores for the set of participants not in that participant’s 2 x 2 cell. This transformation allowed us to 
separate the probability of participants using solution features from examples they have seen from the 
probability of using those solution features even if they had never seen the examples. For each 
participant, the transfer score was the z-score of each feature relevant to the examples they actually 
received.  
 
4.3 Quantity of ideation 
Quantity of ideation was defined as the number of solution concepts generated post analogy, i.e., from 
the second phase of ideation onwards, that met the minimum constraints of the design problem, viz. 
(1) the device generates electricity, and (2) it uses human motion as the primary input. As noted in the 
introduction, quantity is often taken to be a key component of creativity. Quantity was defined at the 
level of the participant, i.e., each participant received a single quantity score. Because we were 
primarily interested in the effects of examples on quantity, analyses concentrated on the number of 
solution concepts generated after receiving examples (i.e., after the first phase) adjusting for the 
number of solution concepts generated in the first phase (which acted as a covariate to adjust for 
baseline variation in quantity across participants).  
 
4.4 Breadth of search 
Breadth of search was conceptualized in our study as the proportion of space of possible solutions 
searched by a given participant. To determine the space of possible solutions, the design problem was 
first functionally decomposed into potential sub-functions by one of the authors, drawing from the 
reconciled function and flow basis of Hirtz and colleagues [8]. The sub-functions used to determine 
the space of possible solutions were: 1) import human, 2) transform human energy to mechanical 
energy, 3) import alternative energy, 4) transform alternative energy to mechanical energy, and 5) 
transform mechanical energy to electrical energy. Each sub-function solution consisted of a how and 
what component, where the former specifies the component of the solution concept that implements 
the sub-function, and the latter specifies either the input or the output of the sub-function (whichever is 
the less specified). For example, a solution for the sub-function “import human” might be “foot with 
pedals.”  

Two senior mechanical engineering students independently coded the solutions to the sub-
functions for each solution concept. The solution types for the how and what components of each sub-
function were generated bottom-up by the students as they coded, with each new solution type being 
added to a running list of solution types; the running list of solution types for each sub-function 
constituted the coding scheme. All sub-functions occurred often enough for stable estimates of breadth 
and novelty (i.e., base rate greater than 0.1, collapsed across conditions). Inter-rater reliability was 
high, with an average Cohen’s kappa across sub-functions of 0.84. All disagreements were resolved by 
discussion.  

We defined the space of possible solutions for each of the what and how components of each sub-
function by enumerating the number of distinct solution types generated by participants across all 
phases of ideation. A breadth score bj

                                                            

 for each participant on sub-function j was then computed with 
Eq. (1): 

 (1) 

where Cjk is the total number of solution types generated by the participant for level k of sub-function 
j, Tjk is the total number of solution types produced by all participants for level k of sub-function j, and 
wk is the weight assigned level k. To give priority to breadth of search in the what space (types of 



energy/material manipulated), we gave a weight of 0.66 to the what level (which was assigned to k = 
1), and a weight of .33 to the how level (which was assigned to k = 2). An overall breadth score for 
each participant was given by the average of breadth scores for each of the three sub-functions j. 
 
4.5 Quality  
Quality of solution concepts was measured using holistic ratings on a set of sub-dimensions of quality. 
Two other senior mechanical engineering students independently coded solution concepts on 5-point 
scales ranging from 0 to 4 (0 is unacceptable and 4 is excellent) for six sub-dimensions of quality, 
corresponding to a set of possible customer specifications: 1) cost, 2) feasibility of 
materials/cost/manufacturing 3) feasibility of energy input/output ratio, 4) number of people required 
to operate device at a given moment, 5) estimated energy output, 6) portability, and 7) time to set up 
and build, assuming all parts already available at hand. 

These sub-dimensions were generated by the second author, who is a Ph.D. candidate in 
mechanical engineering focusing on design methods and cognition, and checked for validity by two 
other authors, who are mechanical engineering faculty specializing in engineering design. For each 
sub-dimension, each point on the 5-point scale was anchored with a unique descriptor. For example, 
for the “feasibility of energy input/output ratio” sub-dimension, 0 was “unfeasible design or input 
energy completely dwarfs output”, 1 was “input less than output”, 2 was “I/O about even”, 3 was 
“sustainable/little surplus output; human input easy”, and 4 was “output significantly higher than 
input.”. The average inter-rater correlation across sub-dimensions was 0.65, and the range was from 
0.49 to 0.77. An overall quality score was computed for each solution concept, as given by Eq. (2):  

                                                                                                (2) 
where qj is the quality score for quality sub-dimension j, rj is the reliability of the coding for that sub-
dimension, and Qmax is the maximum possible overall quality score, which would be given by setting 
qj

 

 to 4 for each sub-dimension. Since the overall quality score is essentially a proportion of the 
maximum possible quality score, the score ranges from 0 to 1. The rationale for the weighting by 
reliability was that we wanted the quality score to be as precise as possible. Inter-rater agreement at 
the level of this composite score was acceptable (r = 0.68). 

4.6 Novelty 
Novelty was defined as the degree to which a particular solution type was unusual within a space of 
possible solutions. Recall that for the breadth metric, the space of possible solutions was defined in 
terms of a set of five core sub-functions for the design problem, with each sub-function decomposed 
further into what and how components. Rather than computing novelty scores for solutions to each 
level of each sub-function (the what and how levels), we chose to compute novelty scores for the 
conjunction of what and how solution components for each sub-function. For example, rather than 
computing the relative unusualness of the solution components “foot” and “pedals” separately for the 
solution “foot with pedals” for the sub-function “import human interaction,” the relative unusualness 
of the solution “foot with pedals” relative to other solutions would be computed. The rationale for this 
choice was that these words in conjunction as a solution have a specific meaning that needed to be 
considered. Novelty scores were computed for each sub-function solution using Eq. (3), which is a 
formula adapted from [25]: 
 

                                                                                          (3) 
where Ti is the total number of solution tokens generated for sub-function i in the first phase of 
ideation (collapsed across all participants), and Ci is the total number of solution tokens of the current 
solution type in the first phase of ideation. Because this measure is essentially a measure of proportion, 
the novelty score for each idea ranges from 0 to 1, with 0 representing solution types found in every 
solution (this extreme was never observed) and 1 representing solution types that never occurred in the 
first phase. The initial set of solution concepts (generated in the first phase of ideation) was taken to be 
the original design space of the participants since it corresponded to concepts generated prior to 



receiving examples. The final novelty score for each solution concept was the average of its sub-
function novelty scores. 
 
5 RESULTS 
5.1 Relationships between metrics  
Analysis of the inter-correlations between the ideation metrics suggested a preliminary process model 
useful for conceptually organizing the results; of course, correlations per se do not guarantee causation 
and other causal models are possible. 

 
Figure 3: Summary of inter-metric correlations. Numbers shown are Pearson’s r. All correlations are 

significant at p < 0.011

 
. 

In this model, increased solution transfer results in decreased quantity, possibly because it 
becomes difficult to think of solutions beyond the ones presented. Also, a high quantity of ideation 
allows for greater breadth of search, even if only on a statistical sampling basis. Greater breadth of 
search, perhaps also only on a statistical sampling basis, in turn allows for generating more novel and 
higher quality concepts. Additionally, repeatedly searching on the fringes of the design space (as 
measured by high average novelty) further increases the probability of finding a highly novel concept. 
Finally, increasing the variability of the quality of solution concepts increases the probability of 
generating a high quality concept. This finding is similar to of Ulrich and colleagues in the field of 
innovation management, who have shown empirically that one way to increase the likelihood of 
finding high market potential product concepts is to increase the variance of the quality of generated 
concepts [23]. 
 
5.2 Effects of example analogical distance 
Separate 3-way (distance x commonness x modality) analysis of variance (ANOVA) models were 
computed for each process variable in the model. In some cases (indicated in each case), the level of 
that variable during the pre-analogy phase was used as a covariate in the analysis because the baseline 
measure was a significant predictor of post-analogy performance. 

First, there was a main effect of distance on solution transfer (p < 0.01), with solution elements 
from far-field examples being much more likely to be used than near-field example solution features 
(d = 0.602

There were no effects of on either mean or maximum quality. However, there was a main effect on 
the variability in quality of solution concepts (p < 0.05; see Fig. 4, lower right): far-field examples 
resulted in a larger standard deviation in quality of solution concepts relative to either near-field 
examples (d = 0.64) or no examples (d = 0.78). There were no significant differences between near-
field examples vs. no examples. Finally, there was a main effect on mean novelty (p < 0.05), where 
far-field examples resulted in solution concepts that were more novel on average than with near-field 
examples (d = 0.56; see Fig. 4, upper right). Distance similarly impacted maximum novelty of solution 

; see Fig. 4, bottom left). Next, there was a main effect on quantity (p < 0.01): receiving far-
field examples resulted in significantly fewer solution concepts relative to near-field examples (d = -
0.30; see Fig. 4, upper left). There were no significant differences in quantity between control (no 
examples) and either far-field or near-field examples. The small effect of distance on quantity did not 
translate into an effect on breadth: there were no reliable effects of distance on breadth of search (p = 
0.78).  

                                                      
1 p values denote the probability of observing the data by chance (i.e., if there actually was not a real effect); p 
values less than 0.05 are conventionally considered statistically significant 
2 d statistics estimate the size of the difference in group means in terms of the average standard deviation of the 
two groups in the contrast; in this case, d = 0.60 estimates that the mean probability of transfer is greater with 
far-field vs. near-field examples by 0.60 of a standard deviation (a moderate to large difference) 



concepts (p < 0.05), with the most novel concept generated with far-field examples being more novel 
than the most novel concept generated with near-field examples (d = 0.56). There were no significant 
differences in terms of either mean or maximum novelty between control and near-field or far-field 
examples. 

  

 
 
5.3 Effects of example commonness 
Turning now to the main effects of commonness in the same ANOVAs, there were no reliable effects 
of commonness on solution transfer (p = 0.30). However, there was a main effect on quantity (p < 
0.01), with more-common examples resulting in significantly fewer concepts vs. less-common 
examples (d = -0.67) or no examples (d = -0.76; Fig. 5, upper left). There were no significant 
differences in quantity between less-common vs. no examples (control). There was also a main effect 
on breadth of search (p < 0.01), with more-common examples resulting in less search of the design 
space vs. either less-common (d = -0.61; Fig. 5, lower middle) or no examples (d = -1.03). There were 
no significant differences in breadth between less-common vs. no examples (control). 

Similar to example distance, there were no reliable effects of commonness on mean or max 
quality. However, there was a main effect of on variability in quality of participants’ solution concepts 
(p < 0.05, η2 

 

= .06; see Fig. 5, lower right), with less-common examples resulting in a larger standard 
deviation in quality of solution concepts vs. either more-common (d = 0.62) or no examples (d = 0.68). 
There were no significant differences between receiving more-common examples vs. no examples. 
Finally, again similar to example distance, there was a main effect of commonness on mean novelty (p 
< 0.01), with less-common examples resulting in higher average novelty vs. more-common examples 
(d = 0.61; see Fig. 5 upper right). There was also a main effect on maximum novelty (p < 0.01), where 
the most novel concept generated with less-common examples was more novel on average than the 
most novel solution concept with more-common examples (d = 0.61). There were no significant 
differences between no examples (control) vs. more- or less-common examples on either mean or 
maximum novelty. 

5.4 Joint effects of example distance and commonness on novelty 
While far-field and less-common examples separately increased novelty of ideas, neither far-field 
examples as a whole nor less-common examples as a whole were significantly different from control, 
which sat in the middle. To examine whether the combination of far-field and less-common properties 
increased novelty over control, we used a Dunnett’s multiple comparison post-hoc test. Since there 

Figure 4: Summary of effects of example 
distance. *, p < 0.05, **, p < 0.01. Control 
group data are shown in white bars. Error bars 
are ± 1 standard error. 

Figure 5: Summary of effects of example 
commonness. *, p < 0.05, **, p < 0.01. 
Control group data are shown in white bars. 
Error bars are ± 1 standard error. 
 



were no effects of modality on novelty (described below), we collapsed across the picture and text 
factors and conducted the post-hoc test comparing each of the combinations in the 2 x 2 matrix 
(distance x commonness) with the control condition as a reference group. The post hoc test showed 
that the combination of far-field, less-common examples did in fact increase novelty vs. control, for 
both mean (d = 1.14; see Fig. 6) and max (d = 1.29). 
 

 
Figure 6. Mean novelty of solution concepts by example distance and commonness. *, p < 0.05. Error 
bars are ± 1 standard error. 
 
5.5 Effects of example modality 
Turning to the effects of modality, there was a main effect of on solution transfer (p < 0.01), with 
more transfer from text vs. picture examples, regardless of distance or commonness (d = 0.60). There 
was also a main effect on quantity (p < 0.01), with text examples resulting in significantly fewer 
concepts than with picture (d = -0.67) or no examples (control; d = -0.56). There were no significant 
differences between picture examples and control. There were no additional effects of modality on the 
other dependent measures (breadth, p = 0.11; mean novelty, p = 0.20; max novelty, p = 0.49; quality 
variability, p = 0.44). In summary, in contrast to example commonness and distance, modality had 
little impact on the key end-state outputs of the ideation process. 
 
6 DISCUSSION 
6.1 Summary of findings 
Our findings demonstrate that key dimensions of examples can influence their impact on designers’ 
ideation in important ways. First, augmenting ideation with far-field examples brings significant 
benefits vis-à-vis the kinds of concepts that can be generated; specifically, ideation with far-field 
examples enhances the ability to generate highly novel solution concepts and also allows for more 
variability in the quality of concepts, which may increase the likelihood of generating high quality 
concepts. However, far-field examples also reduced overall quantity of ideation relative to near-field 
or no examples. One potential explanation for this is that the inspiration from far-field examples can 
come with an initial processing cost. With a 3-way ANOVA model on quantity for only the final phase 
of ideation, removing from consideration quantity of ideation while processing examples, the effects 
of distance were no longer present (p = 0.47). This suggests that the reduction in quantity comes from 
extra time taken to map the far-field examples to the design problem. Second, the use of less-common 
examples can positively impact ideation, e.g., as in our findings, increased quantity of ideation, 
breadth of search, and higher novelty of ideas relative to more-common examples. In contrast to the 
effects of distance, these beneficial effects do not appear to come with an initial processing cost. 
Importantly, representation modality of examples did not change the effects of the distance and 
commonness factors on ideation. However, there was evidence that text representations decreased 
quantity of ideation; similar to the effects of distance, this suppression effect of text representations 
can be interpreted in terms of initial processing costs: in the final phase of ideation, the effect was 
smaller (text vs. pictures d = -0.32) and no longer statistically significant (p = 0.07). As an ancient 
proverb puts it, one picture may be worth 1,000 words with respect to conveying design concepts. 
 
6.3 Caveats 
The current work comes with a number of caveats. First, we examined the effects of particular 
examples rather than a range of examples sampled multiple times from a class of examples. This 
experimental design choice made it more feasible to analyze solution transfer, but raises possibilities 
of effects being caused by odd examples or example descriptions. To reduce this threat, we had two 



examples per condition, and the factorial design of the study permits for multiple replications of main 
effects. Second, our participants were senior-level engineering students, for the most part, rather than 
expert designers, and there is some research to suggest that novices have more difficulty with 
analogical mappings [15, 28]. Finally, our study focused only on the earliest ideation phase, and future 
work will have to examine the effects of examples on downstream, and in particular finished, 
solutions. This restriction was most salient in the analyses of quality in that many of the ideas were not 
feasible or not fleshed out sufficiently to determine feasibility. However, a number of studies point to 
early ideation as a key moment for intervention to generate innovative designs [29, 30]. 
 
6.4 Practical implications and future work 
Beyond showing that certain kinds of examples are better than others, our data provide evidence that 
design-by analogy can confer benefits over and above ideating without examples; specifically, if the 
goal of conceptual ideation is to ultimately generate and develop a concept that is high quality and 
novel, then using analogies (specifically far-field, less-common examples) is worth the extra effort 
over not using analogies.  

There are also implications for the design of tools and methods to support design-by-analogy. 
Given the demonstrated benefits of far-field analogies, and taking into account humans’ difficulty in 
retrieving these analogies from memory [14], computational tools that are able to define and compute 
functional and surface similarity between items in a design space in a principled manner relative to the 
current design problem would hold excellent potential as aids for inspiration. These tools could 
maximize the potential benefits of these analogies by retrieving and delivering them to designers in a 
timely manner. Additionally, if these systems are able to give priority to analogies that are relatively 
unusual or infrequently encountered, the potential for inspiration might be even higher. Currently, the 
state of the art for computational design-by-analogy tools has not reached the point of being able to 
provide flexible and real-time support in this manner. The present work provides an impetus for 
investment into this important research area, as the potential benefits to engineering practice and to 
society via increased innovation is high.  

Finally, there are interesting connections to some other work on designers’ preferences with 
respect to analogical distance in choosing analogies. Recent work has shown that designers’ have a 
preference for finding inspiration from near-field rather than from far-field analogies, and that this 
preference can be optimal with respect to utility of inspired designs, as rated by end users [31]. Taken 
together with the findings reported in this paper on the effects of far-field analogies, one potential 
implication is that a nuanced approach with respect to analogical distance may more effectively 
maximize the benefits of analogies; specifically, rather than only and always focusing on far-field 
analogies, it might be more optimal to draw from far-field analogies primarily during the early stages 
of conceptual design, where broad search and novelty are at a premium, and then subsequently switch 
to near-field analogies to help narrow the search space to more viable solutions. Of course, this 
implication is primarily speculative at this point, and more evidence is needed to verify if such a 
strategy would in fact be effective; future work should explore this intriguing and potentially impactful 
line of research. 

Overall, the present work has helped to show the benefits of analogies for innovative design, and 
perhaps more importantly, suggested important guidelines for maximizing the benefits of design-by-
analogy while avoiding potential pitfalls, and promising further lines of research to increase 
knowledge on effective design-by-analogy practices. 
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