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ABSTRACT 
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Domain specific development environments such as MCAD/ECAD systems can partially exchange 
data based on standard data formats. Due to the complex interdependencies between mechatronical 
components and the diversity of the related product data, it is not possible to tackle the challenges of 
cross-domain engineering by means of direct information exchange only. An overarching information 
backbone, which can be understood by engineers and processed by computers, is necessary. 
This paper presents a function oriented, ontology based approach to provide such a backbone. A 
special functional structure models the functional interdependencies between mechatronical 
components. A use case of the functional structure as information backbone for representation of 
interdependencies is introduced. The use of ontology enables the definition of customizable 
taxonomies for functional modeling dialects which can facilitate even more flexible support for cross-
domain engineering collaboration. 

Keywords: Mechatronics, cross-domain engineering, re-engineering, functional modeling, ontologies, 
product information backbone, knowledge representation  

INTRODUCTION 
The global economy is characterized by rapid innovation, shortened development and product life 
cycles and rising customer expectations in terms of the performance, quality and price of future 
products. Product innovations make a decisive contribution to the way in which these products 
maintain their position in this global economy. Mechatronics – a word made up of mechanics and 
electronics – represents a potential means of successfully creating future products: the close spatial 
and functional integration of mechanical engineering, electrical engineering and information 
technology makes fundamentally new solutions possible, that considerably improve the cost/benefit 
ratio of currently known products, but can also provide a stimulus for new, as yet unknown products 
[22].  
Highly dedicated applications for each engineering domain are available, e.g. ECAD1 (Domain: 
electronics) or MCAD2

The complex interdependencies between mechatronic components, the diversity of the related product 
data and the cross-linkage of the corresponding processes are a major challenge for an effective and 
efficient information management.  

 (domain: mechanics) systems, but existing solutions for bridging between 
domains are still rare and not sufficient.  

Mechanics, electronics and software engineers use different terminology and even more important, 
utilize different ways of thinking and of solving problems, which are well established inside of the 
respective engineering domains. However in cross-domain3

                                                      
1 ECAD: Electronic Computer Aided Design 

 development there are significant gaps 
between the engineering domains, which hinder the communication between the actors of the 
collaboration process.  

2 MCAD: Mechanic Computer Aided Design 
3 “Cross-domain engineering” refers to engineering collaborations which involve at least two engineering 
domains. 



The cost of these gaps is familiar to anyone working in the mechatronics industry; manufacturing or 
testing teams discover at the last minute, that their electrical designs won’t work with their mechanical 
designs – triggering a frenzy of rework that can delay launches, erode quality, and drive up costs. The 
same dynamic occurs between embedded software and overall electronics configurations.  
Thus one of the major problems of cross-domain engineering is the lack of a unifying information 
backbone to keep everyone on the same page at the same time. This has to be done in such a way that 
the work in a specific domain can be carried out in a fashion optimal for this domain. At the same time 
the backbone has to provide enough information to support the collaboration with engineers from 
other domains. 
The EU-project ImportNET4

Functional modeling serves as an information backbone for the cross-domain collaboration. The 
functional structure contains information about the functional interdependencies of the components of 
the mechatronical system. The concept of product function is relevant throughout the lifecycle of a 
product and a function oriented approach can thus be utilized as an important element in capturing, 
sharing and augmenting of product lifecycle knowledge. 

, on whose results this paper is based on, had its focus on cross-domain, 
cross-enterprise and cross-cultural collaborative engineering in a network of SMEs. The main research 
activity was to provide a framework which builds a base to support cross-domain engineering tasks 
within an intercultural collaboration. 

The paper is structured as follows: first, the State of the Art concerning functional modeling, special 
functional structures and ontologies is presented. Further, it is explained how cross-domain design 
information is represented with the help of functional structures through a cross-domain collaboration 
scenario. The ontology support for function-oriented cross-domain engineering is explained. The 
results of this approach are discussed and concluded, and finally, an outlook is given. 

STATE OF THE ART 
Functional modelling 
On the highest abstract level, several independent approaches exist on functional modelling in the 
product development process. One of the first approaches to use shared design models – as a 
predecessor of functional modelling - for designing mechatronic products comes from Cutkosky, 
Mark, Tenenbaum et al. [3], who proposes with the PACT architecture a distributed agent-based 
product developing environment to share concepts and terminology for communicating knowledge 
across disciplines, an interlingua for transferring knowledge among these agents, and a communication 
and control language that enables the agents to request information and services. Ensuring that the 
interacting constraints that must be met by the set of components making up the design are fulfilled is 
done through a design framework described by shared design domain ontologies.  
Umeda and Tomiyama proposed in [21] the concept of Function-Behaviour-State (FBS) modelling, 
where a function is defined as an association of intention and behaviour, and is causally and task-
based decomposed into subfunctions. Based on the resulting FBS diagram, a FBS modeller can search 
for appropriate behaviours for a required function, identify inconsistencies and propose modifications 
to solve these inconsistencies, or identify and reuse functional redundancies.  
Philosophical, physical and technical analysis on technical development postulates that any new 
invention of technical systems can handle three kinds of functional objects: Material, Energy and 
Information ([15], [16]). Different taxonomies were developed on this principle, like for example 
NIST by Szykman and the Functional Basis by Stone and Woods [5]. The Reconciled Functional 
Basis, resulted from the comparison and combination of these two vocabularies, product functions can 
be described by a discrete set of Flows (three functional objects) and a functional basis of Functions 
(discrete set of eight functional verbs).  
An abstract product function can be described in a black-box flow model with input function object 
(Material, Energy, Information), the functional verb (what does the function do?) and a resulting 
output function object which can of course be input for downstream functions. A functional structure 
(flow model) can be developed. 
Based on the abstract modelling scheme, several taxonomies exist to concretize functions. The 
functions on the most detailed level are called special functions. A hierarchical three-step-procedure to 
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derive the special product function from the abstract product functions under a given taxonomy and 
vice-versa can be read in [5]. 

Functional modelling approach: Special Functional Structure 
Using the functional basis of verbs and objects as building blocks, function structures can be 
developed. The so called special functions should formally enable modelling of cross domain 
products. The process of creating the functional structure depends on how the borders of the system to 
be modelled are defined and on the intentions of the modeller. For example, a book usually has the 
function to carry information, but besides information characteristics like data volume and language, it 
has physical properties like width, height, depth and weight. Thus a book can also be used for example 
to support a digital projector, provided that it has the right physical properties. Depending on the 
intentions, emphasis can be put on the information or physical properties. 
A special function structure modelling notation taking more than just taxonomy into account was 
conceived at the IMI. Functional objects consist of Material, Energy and/or Information and 
furthermore do have material-, energetic- and informative properties that can describe taxonomized 
state of aggregation, physical principles and informative aspects. The profound modelling notation can 
be read in [11]. Moreover, by identification tags and additional domain origin information, the special 
function structure (shortened to SFS) allows the cross domain representation of functional knowledge 
about a product in a formal way, which can be processed by a computer. The special functional 
structure modelling notation is shown in Figure 1. A simple example of the modelling notation can be 
seen in Figure 2.  

IMI – Special Function Structure 
function notation

<<functional object taxonomy>>
free functional object name 

<<functional (verb) hierarchy>>
free functional verb name

relation notation 

embodiment relation

Input / Output relation 

Control relation

grouping notation 

functional (verb) group functional object group

<<Material/Solid/Composite>>
Deep-frozen Vegetables

<<Convert>>
Defreeze, Heat-up and Prepare 

Vegetables 

<<Material/Solid/Particulate>>
Heated-up Vegetables

<<Material/Mixture/Liquid-Gas>>
Hot Water and Steam

<<Energy/Electrical/Current>>
Electric Power Supply 

<<Signal/Control/Discrete>>
Duration of Heating 

<<Signal/Control/Discrete>>
Required Power Input  

<<Material/Solid/Object>>
Microwave Oven 

 
Figure 1: Special functional structure modelling notation 

Figure 2: The heating-up of vegetables in a microwave oven modelled using the IMI modelling notation 

In the example in Figure 2, the heating up of vegetables in a microwave oven is modelled according to 
this notation. The frozen vegetables are hereby transformed into heated-up vegetables by addition of 
heat, with hot water and steam as a by-product. For this, electric energy is transformed into heat by the 
microwave oven. The oven also receives as (user) input the required power and the duration of the 
heating. Accordingly, the “Microwave oven” functional object embodies the function “Convert”, as it 
converts electric energy into heat. The function “Convert” receives as input the material functional 
object “Deep-frozen Vegetables”, the energy functional object “Electric Power Supply”, as well as the 
information functional objects Required Power Input” and “Duration of Heating”. The output of the 
function “Convert” are the material functional objects “Heated-up Vegetables” and “Hot Water and 
Steam”. 
In addition to the special functions, in this paper we also use the concept of customer functions. Such 
functions represent the customer view on the system. Customer functions can be realized by one or 
more special functions. A special function can also realize multiple customer functions. 

Ontologies 
The notion of ontology is widely used in the last decades, but different schools and communities 
understand it in different ways. In [4] there are listed 7 different interpretations of the term – and we 
do not consider this to be complete. We quote the definition given by [19] as the most adequate: 



An ontology is a formal, explicit specification of a shared conceptualization. Conceptualization refers 
to an abstract model of some phenomenon in the world by having identified the relevant concepts of 
that phenomenon. Explicit means that the type of concepts used, and the constraints on their use are 
explicitly defined. Formal refers to the fact that the ontology should be machine-readable. Shared 
reflects the notion that an ontology captures consensual knowledge, that is, it is not private of some 
individual, but accepted by a group. 
Conceptual adequacy and expressivity is especially important in engineering ontology applications 
that aim at supporting the creation, analysis or simulation of engineering designs, and this importance 
has led to a substantial amount of research into the problem of formalizing the central concepts of 
engineering, e.g. that of the structure, function and behaviour of artefacts. In this area, important work 
has been done on formalizing Chandrasekan's and Josephson's influential characterization of 
behaviour and function in the DOLCE upper ontology framework ([1], [2], [13]), and the relationship 
between devices and their functions [8]. The possibilities of providing an adequate ontological 
representation of the physical and geometrical characteristics of assemblies have also been intensively 
researched (see e.g. [7]). The idea of functional ontologies is presented in detail by Kitamura and 
Mizoguchi in [9]. 
For the realization of the idea of ontology-supported functional modeling, we shall introduce some of 
the concepts, which will be used further in this paper. 
OWL 
OWL is an abbreviation for Web Ontology Language. OWL supports the hierarchical representation 
of classes, attributes and associations of those classes and their interconnections.  
OWL enables the formal representation of domain concepts, which can be used as a knowledge base 
for further managing and processing. OWL is a semantic mark-up language standardized by the W3C 
consortium for development, publishing and exchanging of ontologies in the World Wide Web. 
SWRL 
SWRL is a Semantic Web rules-language, combining sublanguages of the OWL Web Ontology 
Language with those of the Rule Mark-up Language. 
It extends the set of OWL axioms to include Horn-like rules. It thus enables Horn-like rules to be 
combined with an OWL knowledge base [6]. 
Rules are of the form of an implication between an antecedent (body) and consequent (head). The 
intended meaning can be read as: whenever the conditions specified in the antecedent hold, then the 
conditions specified in the consequent must also hold. 
For the purpose of readability and understanding, we will use a Human Readable Syntax instead of the 
XML Concrete Syntax for the representation of the SWRL rules. In this syntax, a rule has the form:  
 
antecedent → 
 

consequent 

where both antecedent and consequent are conjunctions of atoms written a1 ^ ... ^ an

 

. Variables 
are indicated using the standard convention of prefixing them with a question mark (e.g., ?x). Using 
this syntax, a rule asserting that the composition of parent and brother properties implies the uncle 
property would be written:  

parent(?x,?y) ^ brother(?y,?z) → uncle(?x,?z) 
 
Built-Ins 
Built-Ins are predefined functions which can be used in the context of SWRL rules. For instance, 
comparison operations such as “less than” or “equal”, or mathematical operations such as subtraction 
or division are implemented as Built-Ins. 
The set of built-ins for SWRL is motivated by a modular approach that allows further extensions in 
future releases within a (hierarchical) taxonomy. 
The following example shows the usage of a Built-In for Comparison: 
swrlb:lessThan(?x,10) 

SQWRL 
SQWRL (Semantic Query-Enhanced Web Rule Language) is a SWRL-based language for querying 
OWL ontologies. It provides SQL-like operations to retrieve knowledge from OWL. SQWRL takes a 

http://www.w3.org/Submission/SWRL/�
http://en.wikipedia.org/wiki/Web_Ontology_Language�


standard SWRL rule antecedent and effectively treats it as a pattern specification for a query. It 
replaces the rule consequent with a retrieval specification [14]. 
The following example shows a SQWRL query: 

Person(?p) ^ hasAge(?p, ?a) → sqwrl:select(?p, ?a) ^ sqwrl:orderBy(?a)  

This query will return pairs of individuals and ages with one row for each pair. The results are ordered 
using the orderBy Built-In (sqwrl:orderBy).  

USING FUNCTIONAL STRUCTURES FOR REPRESENTATION OF CROSS-
DOMAIN DESIGN INFORMATION 
The functional structure serves as a model-based notation for information relevant for the cross-
domain engineering collaboration. Product data, e.g. components, requirements, properties etc., are 
organized around the functional structure, utilizing it as an information backbone. In this section an 
example for the representation of cross-domain interdependencies is introduced. An example product 
illustrates the usage of the functional structure. 

Cross-domain engineering collaboration scenario 
The mobile robot is a product which can manipulate objects instead of humans in dangerous 
environments, such as coal mines. The robot has a tracked chassis with tracked legs, which enables it 
to be used in terrains with variable difficulty. In its basic variant, the robot can perform functions such 
as movement (e.g. driving in plane, climbing stairs, crossing ditches) and manipulation of objects with 
a robot arm. The basic variant has a total weight of 73 kg, however, it does not include explosion 
protection. 
Based on this variant, according to customer requirements, two more advanced variants with explosion 
protection are developed by collaborating SMEs. A passive protection variant includes explosion 
protection by means of a tougher body with 8 mm thick wall which can withstand an internal 
explosion. The passive protection variant has a mass of 260 kg. The higher mass of the mechanical 
component “casing” is the main reason for the increased the weight of the robot. The changes of this 
component affect parts from other engineering domains. Due to the increased mass, the electrical 
drives used for robot movement are not able to perform all required operations. The engineers have to 
check which customer functions can still be performed. 
A more complex, active protection variant is developed which includes explosion protection utilizing 
inert gas to fill the robot body in order to prevent an internal explosion. This variant requires some 
additional mechanical, electrical and software components, such as a gas cylinder, gas pressure sensor, 
CH4

The collaborative development is performed by the companies SIASUN

-concentration sensor, two valves, as well as a new software module for controlling the inert gas 
pressure inside the robot. The thickness of the body remains the same as in the basic robot variant (1,5 
mm). Consequently, the active explosion protection variant weighs 80 kg. 

5 (China) and CADCAM6

The Croatian mechanics engineer Mr. Kovac, responsible for the customer function “explosion 
protection” proposes firstly a passive explosion protection design. The Chinese electric/electronics 
engineer Mr. Ni, responsible for the customer functions “drive in plane” and “climb stairs” finds out in 
a discussion with the Chinese mechanics engineer Mr. Wang, responsible for the components of the 
chassis that the higher mass of the passive protection variant leads to some limitations of the 
movement functions: The function “Climb Stairs” cannot be fulfilled. This information needs to be 
communicated and stored using the functional structure.  

 
(Croatia). SIASUN is responsible for the implementation of the basic robot functionality of the robot, 
such as movement (e.g. climbing stairs) and user interaction with the robot. CADCAM is responsible 
for the implementation of the explosion protection functionality. An actor in the engineering 
collaboration can take on different roles, such as: Component responsible, function responsible, 
mechanics / electronics / software developer etc. 
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Figure 3: Example product “Mobile Robot” 

 
Obviously, not only the “climb stairs” customer function, but also other customer functions which are 
realized by the special functions grouped under “transport robot” can be influenced from changes of 
the robot weight. The engineers decide to model the functional dependencies in a more general way in 
order to be able to automatically detect similar problems in the future. For the purpose of this example, 
we take in consideration two of the customer functions: “climb stairs” and “drive in plane”.  
Mr. Ni discusses with Mr. Wang what would be the maximum allowed weight of the robot in order to 
fulfil these functions, without having to perform changes on the chassis or other components. Mr. 
Wang calculates the following maximum allowed weights: 280 kg for “drive in plane” and 120 kg for 
“climb stairs” customer function. These values are stored in requirements attached to the customer 
functions. 
The functional dependencies between the “transport” functions and the weight of the robot (and in 
particular of the casing which caused the initial problem) are stored in rules in the ontology. The rules 
define that if some of the customer functions which are realized by the “transport” special functions 
have requirement with a weight limit, the weight of the robot should be checked. If it is greater than 
allowed, the corresponding customer function cannot be fulfilled and a warning is shown in the 
console. 
The information about functional dependencies can be automatically recalled and used by the MDET 
tool which recognizes the role of the user and the context in which he is working. For example, if the 
user has opened a functional structure of the mobile robot where the customer function “climb stairs” 
is present (see Figure 1) and she wishes to reuse the customer function “explosion protection” in the 
passive variant, which is realized by the special function “isolate robot internal space”, the rules 
defining the dependencies are used to check, if the total weight of the robot exceeds the maximum 
allowed weight. If a problem is discovered, corresponding warnings are shown in the console tab. 

ONTOLOGY SUPPORT FOR FUNCTION ORIENTED CROSS-DOMAIN 
ENGINEERING 
The functional structure as well as the additional information about functional interdependencies are 
stored and managed by ontology. In this section we will present the detailed ontology model of the 
functional structure as well as the rules which represent the interdependencies. Further, we will show 
how relevant information can be extracted using ontology queries. 

Ontology for functional modeling 
Design ontologies 
In ontology modelling it is highly important to identify the individuals. Obviously, the items occurring 
in a design are not identical to the physical objects that are manufactured according to the design in 



question, for example a microcontroller figuring in the design of a robot is different from the physical 
microcontrollers contained in concrete robots. Moreover, an item appearing in a design can occur in 
several documents about it. The individuals of the design ontology can be neither physical objects nor 
signs appearing in documents: they must be mental objects corresponding to designs or design 
components. For all components of a design there is a corresponding class in the manufacturing model 
that contains the physical objects manufactured according to the design element in question, and also a 
corresponding class in the documentation model, which contains signs referring to the element (it is 
advisable to treat the design, manufacturing and documentation models as separate ontologies, and 
express their connections via ontology-mappings – see [12]). A more detailed discussion of general 
problems regarding design ontologies can be found in [17].  
Ontology for functional design 
In order to construct the ontology fragment needed for functional modelling, we have to examine the 
properties, relations and attributes of the individuals that figure in a functional model. Let us collect 
what can be said about a function instance, e.g. the special function „Isolate robot internal space” 
occurring in Figure 4 

• it belongs to the given functional design; 
• it has a name given by the designer; 
• it belongs to a class of the functional basis hierarchy (or to a class in an another standardised 

function hierarchy); 
• functional objects can be connected to it by the input/output relation (see Figure 1); 
• functional objects can be connected to it by the control relation; 
• functional objects can be connected to it by the embody relation; 
• functions can be grouped together into a functional group; 
• customer functions can be connected to special functions with a isRealizedBy relation (inverse: 

realizes); 
 

Manipulate 
Objects

Drive in plane

Climb stairs

Explosion 
protection

<<Channel/Transfer/Transport>>
Transport robot 

<<Channel/Guide/Rotate>>
Move main caterpillars 

<<Channel/Guide/Rotate>>
Move legs 

<<Channel/Guide/Rotate>>
Move leg caterpillars 

<<Channel/Guide>>
Manipulate objects

<<Branch/Separate/Divide>>
Isolate robot internal space Casing

Chassis

Robot arm

<<Channel/Transfer>>
Manipulate and move objects

R: Max 
weight 
280 kg

R: Max 
weight 
120 kg

 
Figure 4: Functional structure fragment of the mobile robot with passive explosion protection 
 
Clearly function and functional object individuals are needed. Their names (e.g. “Transport robot”) do 
not identify their occurrences, therefore the individuals have to get identifiers, and the names are given 
as attribute values. The functional basis terminology names classes; the corresponding classification of 
the individuals can be given by the instance of relation (e.g. << Magnitude/Change/Condition >> can 
be specified by stating that the individual is an instance of the class Condition). We use the has-input, 



has-output relations to connect function instances to functional object ones. A relation named in 
connects the individuals to the functional design individual in question. 
 

 
Figure 5: Multi Domain Engineering Tool with functional structure 
 
Further on, the function „Isolate robot internal space” in Figure 4 is embodied by a functional object 
called “Casing”. This reflects the fact that the casing provides the encapsulation of the robot internal 
space from the environment. The ontology fragment in Figure 6 shows a special function F2 which is 
an instance of the class “Divide” and is embodied by the functional object O2 (“Casing”). The special 
function F2 realizes the customer function CF3 (“Explosion protection”). 
Special functions can be organized in a hierarchy, e.g. the functions “Move main caterpillars”, “Move 
legs”, “Move leg caterpillars” are sub-functions of “Transport robot”. Figure 6 shows for example that 
the special function F1 (“Transport robot”) contains the special functions F1.1, F1.2, F1.3. 
Figure 6 shows the ontology model of the functional structure.  
Based on the functional structure of the mobile robot (see Figure 4), and on the OWL-ontology in 
Figure 6, we can define ontology rules and queries which represent the interdependencies between 
functions and components. The following code shows the rule/query which retrieves the information 
about all supported customer functions which might be affected by the change of the robot weight: 
 
1 OntologyFM:hasChild(OntologyFM:TransportRobot, ?ef) ^ 
2 OntologyFM:realizes(?ef, ?cf) ^ 
3 OntologyFM:requirement_maxWeight(?cf, ?max_w) ^ 
4 OntologyFM:Assembly(?a)^ OntologyFM:hasPart(?a, ?c) ^ OntologyFM:Component(?c) ^  
5 OntologyFM:hasWeight(?c, ?w) ˚ 

6 sqwrl:makeSet(?s, ?w) ˚ sqwrl:sum(?sum, ?s) ^ sqwrl:groupBy(?s, ?a) ^  
7 swrlb:lessThan(?sum, ?max_w) → 

8 sqwrl:select(?a, ?cf) 

 
This ontology rule is defined using SWRL rule language and SQWRL query language. The rule 
consists of an antecedent (left hand side of →) and a consequent part (right hand side of →) and is 
explained in detail below. 
 



 
Figure 6: Functional structure modelled in ontology 

Rule antecedent: 
Rows 1-3: Getting the required values for maximum robot weight, which a customer function can 
handle. 
(1) By changing the customer function “Explosion protection”, the engineer is changing the casing 
of the product which affects the weight of the robot. Because the weight might affect any of the 
transport functions of the robot, the rule starts with finding all children (sub-functions) of the special 
function “Transport Robot”. Result: Move main caterpillars, Move legs and Move leg 
caterpillars. 
(2) This line retrieves the customer functions which are realized by the special functions found in the 
previous line. Result: Drive in plane and Climb stairs. 
(3) Gets the requirements for maximal weight, specified earlier by the engineer. Result: in the 
variable ?max_w now holds the requirements for the functions Drive in plane (max_w = 280kg) 
and Climb stairs(max_w=120kg). Those values are used for comparison with the calculated robot 
weight. 
 
Rows 4-7: Calculating the total weight of each of the robot variants and comparing it with the required 
maximum weight. 
(4-5) Finds the weights of the building parts of each of the variants of the robot, so that these values 
can be used for calculations in the next step. 
(6-7) Using the SQWRL Built-Ins makeSet, sum and groupBy, this line creates a set of the parts’ 
weight for each robot variant, and then iterates trough the set and aggregates the elements in the 
variable ?sum. The SWRL Built-In for comparison lessThan compares the total robot weight with 
the requirements for maximum weight. 
 

(8)  At this line we make a query for retrieving pairs of the type (robot version, supported 
customer function).  

Rule consequent: 

(Robot1, ClimbStairs) 
(Robot1, DriveInPlane) 
(Robot2, DriveInPlane) 
(Robot3, ClimbStairs) 
(Robot3, DriveInPlane) 
 
Note: In the shown rule we check only the customer functions, which could be possibly affected by the 
change. According to the cross-domain engineering collaboration scenario, these customer functions 



can only be realized by children of the “Transport robot” function. The variants Robot1 and Robot3 
are able to fulfil both customer functions “Drive in plane” and “Climb stairs”, because their total 
weight is less than the required maximum weight in both cases. Robot2 fulfils only the customer 
function “Drive in plane”, because its’ weight exceeds the required maximum value for “Climb stairs”. 
The result of the created rule is processed by MDET according to the context. Because in our example 
the user has selected the context of Robot2, MDET issues a console warning, that the robot variant, 
which is currently being modelled, cannot fulfil the “Climb stairs” customer function.  

Customizable taxonomies for functional modelling dialects 
The experiences made in the application of functional modelling in ImportNET showed that it is 
possible that the functional structure for a particular system can be modelled and interpreted 
differently by different engineers. The issue is even more evident if cross-enterprise and cross-cultural 
issues come into play. 
One of the causes for this problem is the low granularity of the functional modelling taxonomies for 
functional verbs and functional objects. The categories defined by these taxonomies are relatively 
general. In this way the amount of functional verbs and objects is kept relatively low. For a “classical” 
functional modelling approach, this is a necessity: 

1. To enable an efficient functional modelling process, the taxonomies have to be kept compact. 
In this way, the people creating and using the functional structure have the possibility to get 
familiar with the functional verbs and objects and can use them fluently. 

2. The taxonomy of functional verbs and objects defines the building blocks (the basis) for 
functional modelling. In order to enable the modelling of a great variety of systems in an 
uniform way, the elements of the taxonomy have to be on a general level. With an increasing 
granularity of the taxonomy it becomes difficult to “reach an agreement”, to find elements 
which apply equally well in different products and enterprises, and at the same time to keep 
the taxonomy manageable. 

The functional modelling methodology of the IMI addresses this issue by enabling the engineer to add 
a free name (textual description) to functions and functional objects. In this way, the engineer can 
document his personal interpretation of the function/functional object. This approach is a step forward 
in reducing the ambiguity of a functional structure, which works well for single engineers or small 
teams inside an enterprise. 
However, if engineers from different domains, enterprises and cultures are involved in the modelling 
process, the free text names are difficult to comprehend because of their high granularity and high 
degree of customization. 
Thus in the “classical” functional modelling (as without the support of ontology), there is a gap 
between the high level taxonomies of functional verbs/objects and the free text names of functions and 
functional objects. This gap could be filled with the definition of enterprise (or project) specific 
taxonomies for functions and functional objects, which can classify the items by multiple criteria, e.g. 
previous usage of the function/functional object in combination with MCAD/ECAD-Parts and/or tests, 
namespace/department in which the taxonomy is valid, purpose of the function etc. 
However, the introduction of multiple dimension taxonomies on different abstraction levels raises 
some considerable problems in the handling of the functional structure: The effort for managing, 
synchronizing and mapping between the taxonomies explodes [11]. Using ontologies, a more flexible 
language can be defined: users can create their own system of representation. 
The basic hierarchy of the functional basis can be extended by different further taxonomies according 
to different possible points of view. The parallel taxonomies can live together in the same ontology, 
and could be used at the same time. The main point is that every working community can build their 
own ontology, and so their own dialect of a common functional modelling language. 
We know that engineers do not know how to use ontology editors – and they do not need to know 
anything about ontologies. The case of databases is similar: information systems using databases are 
used by users knowing nothing about the SQL language. The MDET functional modeller serves as an 
ontology editor – of course in a restricted way. This was proved by the Ontology Integration Tool 
worked out in the ImportNET project [20]. So ontologies give the users liberty to use, modify, refine 
knowledge and save consistency at the same time. 



DISCUSSION RESULTS 
The function oriented approach presented here enables a unified view on the mechatronical system, 
independent of the engineering domain. At the same time, engineers have the freedom to use the tools 
and data models which are optimized for their respective engineering domains, because the approach 
utilizes a higher level of modelling, which does not interfere with the existing models, but rather 
shows their complex interdependencies. The function oriented view on the mechatronic system 
complements the well known product structure view. It enables the intelligent, IT-based support of 
tasks, such as representation of cross-domain interdependencies. Through the use of ontology, 
knowledge about cross-domain interdependencies can be stored and retrieved automatically to 
intelligently support engineering design tasks. 

CONCLUSION AND OUTLOOK 
The ontology based, function oriented approach is a step forward to semi-automated, cross-domain 
engineering applications. It provides a basis on which further research can be performed.  
The creation of the functional structure can be automated. One of the promising approaches, with high 
industry relevance, is the generation of a functional structure from use cases. Another approach is 
“form follows form” [18]. Such approaches can be utilized to provide a higher level of automation and 
thus reduce the effort for the user. 
Customizable taxonomies enable the definition and usage of dialects of the functional modelling 
language. The MDET tool is further developed to support the definition and usage of project and 
enterprise specific taxonomies with automated support for mapping (translating) between different 
taxonomies.  
The MDET can be extended with regard to its visualization capabilities. Virtual reality techniques can 
be used in order to enable an interactive and immersive interface to MDET. Integrated visualization of 
mechatronic components and the functional structure, e.g. through so called visualization metaphors, 
can enhance the user experience with the virtual environment [10].  
The application of the functional oriented approach for automation in the virtual validation is of 
particular interest for the industry. Current research is focused on using the ontology based functional 
structure for automating the process of virtual validation of product designs. 
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