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1. Introduction 
Macro geometric variations of mechanical components have an important impact on the product 
performances, as they can compromise its functionality. The knowledge of the link between shape 
variation and functionality can enable designers to get an optimum choice of tolerance value. If this 
link is unknown, tolerances are, in general, specified at the higher level of precision that the 
technology allows or following empirical rules. 
In this work the authors deal with the problem regarding tolerance design of the journal � bearing 
kinematic joint, in which hydrodynamic lubrication conditions are realised. In particular, they propose 
a simplified numerical approach to analyse consequences of macro geometric variations on the 
performances of this kind of bearings. While the effects of micro geometric variations on the 
performances have been studied by many authors (as example, [Patir 1979] and [Venner 1999]), the 
effects of the shape variations are not so known. In fact just [Hargreaves 1991] and [Srinivasan 1992] 
study this problem using Montecarlo method, stochastic processes or fractal-based geometry to model 
shape variation. 
The final objective is numerical formulation of new abacuses to be used in the design of such 
kinematic joints that show how the kinematic joint performances change when the functional feature 
has not the ideal shape. Of course, the designer can use the abacus starting from a performance 
objective and evaluating the maximum allowable macro geometric error (i.e. the tolerance value) that 
satisfies the functional requirements. 

2. The journal � bearing kinematic joint 
A journal � bearing kinematic joint is schematically represented in fig.1. The journal, p, is usually the 
rotating element of the joint and it is part of a shaft (i.e. the rotor of a machine). The bearing, c, 
operates like a constraint as it forces the shaft to rotate around a fixed axis. It is fixed to the support 
structure, s, of the rotor. The journal transmits a radial force, constituting the bearing load. In order to 
realise a radial clearance, the journal diameter has to be smaller than the bearing one. 
When the shaft doesn�t run (its angular velocity is zero) and the radial force direction is down, due to 
the radial clearance, journal and bearing come in contact along a generatrix. 
When the shaft rotates the lubricant comes between journal and bearing and generates a pressurised 
layer. Under stationary conditions the shaft axis and the bearing axis will not coincide; their distance is 
named journal eccentricity, e. In such conditions the shaft axis rotates around the bearing axis creating 
a convergent � divergent meatus. 
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Figure 1. Journal � Bearing kinematic joint 

In this way the pressure field generated within the meatus supports the load acting on the bearing. The 
use of such bearings is recommended when high loads and high angular velocities are faced.  

3. Numerical analysis of the journal cylindrical bearings 
The study of the journal cylindrical bearings (and generally of all the mechanical parts in which 
hydrodynamic lubrication conditions are realised) is faced through the solution of the Reynolds 
equation (also known as lubrication equation), which allows to obtain the pressure field distribution 
within the meatus when specific hypotheses on the lubricant characteristics and on its motion within 
the meatus are satisfied [D�Agostino 1992]. Once this pressure field distribution is known it is possible 
to calculate the load carrying capacity for the bearing design. 
In fig. 2 it is schematically represented the geometry of the system on which the Reynolds equation in 
its two-dimensional form (1) is applied. 
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Figure 2. Reynolds equation parameters in the journal � bearing kinematic joint 

In the table 1 the Reynolds equation parameters are briefly explained. 
 

Table 1. Reynolds equation parameters 
B Axial dimension of the bearing θ Circumferential direction 
R Radius of the bearing, R = D/2 U Journal surface velocity 
r Radius of the journal p Pressure 
c Radial clearance, c = R - r µ Viscosity 
e Eccentricity h Film thickness, h(θ) = c(1+n cosθ) 
n Eccentricity ratio, n = e/c hmin Minimum thickness 
W Extern load transmitted by the journal φ Attitude angle 

y 
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3.1 Numerical Integration of the Reynolds equation 
In literature several authors [D�Agostino 1992], regarding the integration of the Reynolds equation, 
make reference to the theory developed by Sommerfeld which provides the results following an 
analytical approach but introducing a simplifying hypothesis (infinite bearing): B >> R. Other 
hypothesis (short bearing) was developed to obtain the analytical solution but none of them can 
properly interpret the real cases. Thus it is necessary to model �the finite bearing� which can�t be 
solved analytically. 

3.1.1 Finite difference method 
Following the numerical approach [Pinkus 1961], [Gutes 1997] it is possible to solve the steady � state 
Reynolds equation for hydrodynamic journal bearing and to determine the pressure field in the fluid 
film. This approach foresees five steps. 
i) Non � dimensional equation (1) with the following parameters:  

x = rθ (0 ≤ θ ≤ 2π); z = BZ (0 ≤ Z ≤ 1); h = cH; p* = 6µUr/c2; p = γ p*; k = r/B.  
Equation (2) is obtained: 
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ii) The inner bearing surface is developed in a plane and a mesh is built (fig. 3). 

                                   
Figure 3. Finite difference meshFigure  Figure 4. Boundary Conditions 

iii) In the generic (i, j) point of the mesh, the derivatives of the γ(θ, Z) function (representing the non � 
dimensional pressure) and the H(θ, Z) function (representing the non � dimensional thickness of the 
film) are approximated through their incremental factors. 

iv) Boundary conditions, as shown in fig. 4, are defined (γs is the supply pressure; γ0 = 0 is the 
atmospheric pressure). 

v) The last step foresees the solving of a linear system of equations, [A] [X] = [B], where: [A] is the 
coefficients matrix, [X] is the unknown pressures vector, and [B] is known terms vector. 

The solution of this system provides the pressure�s field in the fluid film. The more the mesh is dense, 
the more the solution will be exact. 
The solution points out that while in the meatus convergent region the pressure is positive, in the 
divergent region it is negative (fig. 5). In order to obtain the load carrying capacity only the positive 
region of pressure field is integrated according with the �half Sommerfeld condition� [D�Agostino 
1992] which assumes pressure to be zero in the divergent region (fig. 6). 

3.2 Bearing performances in the ideal case 
The authors have developed an algorithm (named �SMOOTH�) written in Fortran language in order to 
solve the Reynolds equation and to build the project curves related to journal bearing. The program 
has been validated under the hypothesis of ideal surfaces between the two pieces of the kinematic 

γ = 0 

γ = 0 

γ = γs  γ = γs  
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joint. To validate the programme the extracted curves have been compared with those supplied by 
manuals [D�Agostino 1992], [Jacazio 1992]. 

                    
Figure 5. Pressure�s field: �Full Sommerfeld condition�    Figure 6. �Half Sommerfeld condition� 
For examples of these first outputs of the programme in fig. 7 the project curves regarding the 
minimum thickness of the film (hmin) in function of the Sommerfeld number (1/∆ = µBur2/πWc2) for 
several values of the ratio B/D are shown. In fig. 8 the project curves regarding the circumferential oil 
flow in function of the Sommerfeld number for several values of the ratio B/D are shown. 
 

            
   Figure 7. Minimum thickness of the film                               Figure 8. Circumferential oil flow 

4. The simulation of the shape variation. 
While the effects of micro geometric variations on the performances have been studied by many 
authors [Patir 1979], [Venner 1999], the effects of the shape variations are not so known. Nowadays 
often the designers assign a very restricted tolerance value to hide their ignorance regarding the 
influence of the shape variation on the bearing�s functional parameters. So it should be useful to 
quantify the difference between the behaviours of the real bearings and the project curves extracted 
under the hypothesis of ideal surfaces.  
 
A shape variation from the ideal surface determines continuous variation of meatus thickness along Z. 
Therefore the meatus thickness can be modelled by a stochastic process and it is a random variable in 
each section. Having formulated hypothesis on its distribution, the shape variation can be simulated 
through the Monte Carlo method. As the cylindricity tolerance prescribes that the real inner bearing 
surface has to be contained within two coaxial cylinders whose distance is the tolerance value, t (fig. 
9), it is possible to simulate the real shape subjected to this constraint.  
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Figure 9. Cylindricity tolerance 

4.1 Design of Experiments 
As the Montecarlo method provides reliable results only executing many iterations of the procedure, 
some simplifying hypotheses have to be introduced. 
i) Considering the more critical conditions, only points belonging to the two borders of the tolerance 
range and to the ideal surface are taken into account. So the meatus thickness (h) can assume three 
values: (h-t/2), (h), (h+t/2). 
ii) Considering only macro geometric variation it is possible to take into account a discrete number of 
surface points to be associated with an error. 
iii) Even if the numerical solution of the Reynolds equation has been obtained for its two dimensional 
form (θ and Z variables), in order to save calculation time, only the θ dimension is taken into account. 
iv) Cause to the �Half Sommerfeld condition� the range between π and 2π, in which the meatus is 
divergent, is meaningless.  
v) In order to study macro geometric shape variation along θ direction, the authors have fixed 5 
�stations� in the range [0, π]: 0, π/4, π/2, 3π/4, π. In every station is simulated the shape variation, 
which can assume one of the three values (h-t/2), (h), (h+t/2).  
vi) In order to even simplify the calculations an open traverse has been considered (in this first work 
the description of a general method to relate the shape variation to the bearing�s behaviours was 
considered more important than a hard code). In fig.10 the variation of the thickness of the meatus, 
when a shape variation occurs, is shown. 

 
Figure 10. Variation of the thickness of the meatus 

Even though these simplifying hypotheses, the estimation of the computation time needed to run the 
full factorial design with 35=243 possible configuration, suggests to use the fractional factorial design 
[Box et al. 1978], [Park 1996], [Montgomery 1996]. To this end the L27(313) orthogonal array has been 
selected. So the computer experiment phase has been carried out only through 27 simulation (that take 
about 48 hours of runtime on a pc platform). 

4.2 Carrying out the experiments 
Starting from the SMOOTH algorithm, a new one, FACET, has been developed taking into account a 
non-dimensional tolerance parameter and fixing the B/D ratio to 1. Since in the algorithm the input 
variable strongly connected with the bearing surface is the radial clearance, c, it can be defined again 
as: c = c*(1 ± err/2), where c* is the nominal radial clearance (see table 1) and err = t/c* is the non 
dimensional tolerance parameter (0.1 ≤ err ≤ 1). The FACET algorithm simulates the 27 facet surfaces 
of the fractionated test�s planning entering an err value. For each err value and for each facet surface 
the programme provides some diagrams relating the bearing�s characteristics (minimum thickness hmin, 

- Irregular profile 
- Ideal profile
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circumferential flow Qx, axial flow Qz, attitude angle φ, friction coefficient fr, and temperature 
gradient ∆T) to the Sommerfeld number 1/∆. 

4.3 Data Analysis 
The fractional factorial design leads to a simply additive model. It hypothesises that the interactions 
between the control factors are not significant. In order to confirm this working hypothesis the process 
has been run for several eccentricity values and for two err values: 0.1 and 0.2. Due to the great 
amount of data obtained the Pareto ANOVA analysis [Park 1996] has been used in order to build for 
each characteristic the �contribution ratio� curve of each station in function of the eccentricity. In this 
way has been explained the influence that each station have on each characteristic. Confronting the 
diagrams concerning the two error, err, values (i.e. the diagrams regarding the Sommerfeld number 
are shown in fig.11), the following information has been obtained: 

  
Figure 11. Contribution ratio in function of the eccentricity for the Sommerfeld number 

i) The more significant stations are last two (4 and 5) corresponding to the convergent part of the 
meatus where the pressure gets the maximum value. This is in agreement with the physical model of 
the journal- bearing joint. 
ii) Varying the non-dimensional tolerance value quite coherent results are obtained.  In fact they seem 
to be affected only by the scale factor between the two err values. 

4.3.1 Determination of the “best profile” and the “worst profile” 

The estimation of the medium effects pointed out by the Pareto ANOVA analysis allows determining 
the factor�s combination that make the analysed performance minimum or maximum. Thus for each 
program output there are some level combinations in the various stations that optimise, for example, 
the Sommerfeld number rather than the circumferential flow. Facing the study from an engineering 
point of view the worst conditions have to be checked and then affecting them with a security factor. 
So it is important to give more importance to the �worst profiles�. In particular it is checked the 
combination that minimises the Sommerfeld number; further it is checked the combination that 
maximises:  

•  the friction coefficient; 
•  the temperature gradient; 
•  the circumferential oil flow; 
•  the axial oil flow. 

The study has pointed out that five profiles are sufficient to get, for each simulated eccentricity, the 
maximum and minimum value of all the significant behaviours. 

4.3.2 Additive model validation 
In order to validate the additive model, a simulation generating these 5 profiles has been arranged. As 
the curves generated by this simulation are extern to those one generated using the fractionated test�s 
planning and the same err value, the design parameters are not interacting and the additive model is 
applicable (fig. 12).  

err = 0.1 err = 0.2 
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Figure 12. Additive model validation: Axial oil flow as function of the Sommerfeld number 

4.4 Kinematics joint performances for several tolerance values 
Since the model has been validated, in order to obtain the extreme curves of the variability range for 
each performance, several simulations have been made varying the err value from 0.1 to 1. The 
simulations pointed out a light influence of the shape variation on the Sommerfeld number value, the 
friction coefficient, the temperature gradient and the axial oil flow, as well as a considerable influence 
on the circumferential flow (fig. 13). 

 
Figure 13. Circumferential oil flow as function of the Sommerfeld number for several tolerance 

values 

4.5 Tolerance abacuses 
In order to give a practical tool to designer some tolerance abacuses are proposed. These show, for a 
fixed value of the bearing load carrying capacity, the level of each performance as function of err 
value, both for the best profile and for the worst profile. The more consistent results have been 
obtained from the abacus related to the circumferential oil flow. The best profile influences this 
characteristic till the 2.32%; the worst profile (which maximises the performance) influences the 
characteristic even till the 32.2% (fig. 14). 
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Figure 14. Tolerance Abacus: circumferential flow 

as function of err for a fixed Sommerfeld number 1/∆ = 0.2 

5. Conclusions and future works 
In conclusion in this work the first results of a method to evaluate shape variation influence on the 
performances of the journal � bearing kinematic joint are shown. For the first time a design of 
experiments methodology is proposed to simulate the shape variation to save computational time 
compared to an extensive application of the Montecarlo method. Furthermore the authors have 
proposed some abacuses to study the performances of the kinematic joint as function of the tolerance. 
These abacuses can be used directly by the designer. These curves allow the functional choice of 
geometrical tolerances.  
This work is the first step of a research project about tolerance design through modelling the shape 
variation effects on functional requirements of kinematic joints. To this end, the algorithm realised by 
the authors has been arranged in order to allow future shape variation modelling removing some 
simplified hypotheses just adopted. 
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