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1. Introduction 
The architecture of an engineering product has a strong influence on its quality, across many different 
lifecycle stages. For instance, Ulrich states that product architecture can influence product change, 
product variety, component standardisation, product performance and product development 
management [Ulrich, 1995]. In principle, it is therefore important to tailor a product’s architecture to 
the requirements placed on it. However, many complex products are designed incrementally, based on 
previous versions [Eckert et al. 2004] – carrying over elements of their architecture. This paper 
attempts to investigate how such carry-over of “legacy” architectures can affect the quality of new 
designs, using computational design synthesis techniques to simulate real design.  
Product architecture has been defined as “the scheme by which the function of a product is allocated to 
physical components” [Ulrich 1995]. Despite its importance, the qualitative nature of product 
architecture means that it is not easy to define a “design space” of architectures, in comparison with 
numerical design problems. Therefore, it may be difficult to identify alternatives to a given 
architecture, even if the alternatives are superior. 
This is particularly problematic in incremental design, where parts of the design of a complex product 
may have remained unchanged across multiple generations, spanning extended periods of time. In 
many cases such design carry-over may be intentional, due to the complexity of the product and the 
resulting risk and cost of modifying it. However, with time such design decisions can become 
“fossilised” into “fictitious constraints” [Pahl & Beitz 1996] on the form of a solution. Many design 
approaches, such as Systematic Design, specifically suggest looking beyond such “fictitious 
constraints”, but without considering that there may be underlying reasons for the constraints [Pahl & 
Beitz 1996]. In addition, from a psychological point of view, design has been demonstrated to be 
subject to “fixation” effects [Purcell & Gero 1996], where knowledge of a past solution to a problem 
makes it cognitively more difficult for designers to generate new solutions. Such effects may further 
hinder designers from thinking beyond known architectures.  
Both rational architecture carryover and fictitious constraints were observed in a case study of diesel 
engine design [Wyatt et al. 2009a]. For the former, the interviewees in the case study (engineers 
involved with the new product development process within the case study company) described 
situations where specific engine components were intentionally reused from previous designs to 
reduce development time, cost and risk; however, one of the interviewees also explained that design 
relied on a “shared vision” of the engine derived from previous versions, suggesting a route for 
unintentional carryover. There was also evidence that standardisation of business processes in the 
company may reduce architectural innovation.In order to provide guidance to designers on the 
importance of these effects, this paper investigates the effect of architecture carry-over on the quality 
of a product. The remainder of this paper is structured as follows. Section 2 states the research 
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questions investigated in this paper, and justifies the use of computational design synthesis to 
investigate the effect of architecture carry-over. Section 3 explains the specific computational design 
synthesis method employed. Section 4 presents the example design problem, the experiments carried 
out, and the results obtained. Section 5 discusses the results in the context of the research questions 
and suggests directions for future research. Finally, section 6 draws brief conclusions. 

2. Research questions and approach 

2.1 Research questions 

This paper aims to answer two research questions: 
How does incremental design (using a previous design as the basis for a new product 
architecture) affect the achievable product quality, compared with original design (designing 
without preconceived ideas of the solution’s form)? 
If incremental design does limit achieveable product quality, can the severity of the limits be 
reduced by allowing greater design freedom? 

2.2 Approach 

The most accurate answers to the research questions posed above would be obtained through empirical 
studies of real design processes. However, it is difficult to obtain useful results from such studies, due 
to the duration of real design processes, their uniqueness, and the difficulty of precisely measuring and 
controlling cognitive parameters such as design freedom. This paper therefore takes a simulation 
approach, modelling real-life engineering design using computational design synthesis. 

Table 1. The aspects of computational design synthesis used to simulate aspects of real 
engineering design, and their limitations 

Engineering 
design 

Simulation Potential limitations of model 

Product 
architecture 

design 

Constraint-based 
network synthesis 

Computational methods do not reflect cognitive processes in 
design, and are fundamentally naïve. Thus, the range of 

results may not explore the full range of possibilities and/or 
may not respect actual constraints, depending on how the 

synthesis is set up. However, if the design problem is correctly 
formalised the results from computational synthesis should be 

equivalent to those that could be found by conventional 
methods. 

Wide range of 
design problems 

Single design problem 
based on a real 

example 

The results from the example problem may be of limited 
validity, especially for problems of significantly greater or 

lesser complexity. 

Original design Starting synthesis from 
an empty product 
architecture model 

Even in original design, engineers may have some insight into 
the structure of the solution based on their previous 

experience. 

Incremental 
design 

Starting synthesis from 
a model of an existing 
product’s architecture 

This may be too rigid a representation of what is reused in 
incremental design. 

Varying degree of 
design freedom 

Varying maximum 
backtrack depth in 

synthesis 

This is a simple model of “design freedom”. In particular, 
some “backtrack” steps may be more costly (thus less likely to 

be undertaken) than others. 

Design quality Structural metrics 
applied to architectures 

These metrics are not direct measures of top-level business 
considerations, e.g. profit or sales. However, the metrics used 
are intended to capture some of engineering-related costs of 

developing a product. 

Computational design synthesis involves the use of computational methods to solve problems in 
design. It is distinguished from optimisation by the relatively unstructured problems to which it is 
applied: in optimisation the design representation is frequently a finite-dimensional vector of real 
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numbers, whereas in computational design synthesis the representation may consist of more complex 
information structures. Computational design synthesis has successfully been applied to engineering 
problems ranging from structural design of trusses [Shea et al. 1997] to design of robots and their 
controllers [Lipson & Pollack 2000]. Such methods have a variety of advantages over conventional 
design: they are able to approach problems systematically, without suffering from cognitive biases or 
fixation, and generate large numbers of potential solutions rapidly. 
 
However, the use of computational methods has the additional advantage of allowing full control over 
the process of finding design solutions. Thus, it is possible to compare objectively the results obtained 
from different “parameter settings”; if the parameter settings are chosen to correspond to different 
design approaches, insights may be gained into the behaviour of design practice.  
In this work, we use constraint-based network synthesis [Wyatt et al. 2009b] to generate product 
architectures. The strength of this method is that it can model both original design, by starting 
synthesis from an empty architecture, and incremental design, through starting from a model of an 
existing product. The amount of “design freedom” allowed in incremental design can also be modelled 
using the amount of “backtracking” from the synthesis start point, i.e. the number of elements in the 
start point that may be removed before “forward” synthesis; increasing the amount of “backtracking” 
will lead to architectures that are less similar to the start point. The architectures resulting from 
synthesis are evaluated for “quality” using structural metrics of the networks of which they consist. 
Table 1 summarises how different aspects of computational design synthesis are used to simulate real 
engineering design, and some of the limitations inherent in doing so; the limitations are discussed 
further in subsection 5.2. The following section gives more detail about the product architecture 
synthesis method (subsections 3.1 and 3.2) and the metrics used for evaluating architectures 
(subsection 3.3). 

3. Using computational design synthesis to explore spaces of architectures 

3.1 Representing product architecture design problems 

In the computational design synthesis method used in this paper, a specific product architecture is 
represented as a network (or graph) consisting of nodes (components) linked by edges (physical 
connections or other relations). Both components and connections have types assigned to them. This 
makes it possible to indicate different categories of element and show where components or 
connections are equivalent within the scope of product architecture design (although, for example, the 
detailing of one “injection-moulded plastic component” may be very different from that of another). 
Connection types may be directed or undirected, according to whether the relevant connections are 
symmetric (e.g. “attached to”) or asymmetric (e.g. “contains”). Both component and connection types 
can be hierarchically organised, and a given type can have multiple “parents”. Only the types at the 
lowest level of the hierarchy are “concrete” (i.e. instantiable), while the others are abstract (i.e. not 
instantiable). The types of connections/relations modelled are at the discretion of the modeller, but 
may include structural, behavioural, geometrical and/or assignment relations.  
Using this representation, a particular product architecture can be viewed as a point in a “space of 
product architectures” that includes the architectures of other “equivalent” products. In this context, 
“equivalence” can be interpreted more or less broadly: the space of architectures for the set “products 
that clean floors” contains more possibilities than the space for the set “cylinder vacuum cleaners”, 
which is in turn larger than the space for the set “cylinder vacuum cleaners made by [Company X]”. 
The extent of a space of architectures is defined by the different arrangements of components and 
connections, but not every arrangement of components and connections “makes sense”. More 
formally, an arrangement of components and connections is defined to be “realisable” if and only if it 
forms a model of the product architecture of a product that could fulfil the desired function. The set of 
“realisable” product architectures can then be modelled using constraints on the components and the 
connections between them. In this method, four types of constraints are used: 

 Component number constraints (CNCs) indicate how many components of a given type may 
be present in a design.  
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 Direct connection constraints (DCCs) indicate which component types may be connected 
together by which connection types. In addition, they state the required cardinality of the 
connection – how many components of the second type may be attached to a component of 
the first type, and vice versa. 

 Fan-out constraints (FOCs) indicate how many connections of a certain type that 
components of a certain type may have in total (incoming and/or outgoing, as appropriate). 

 Indirect connection constraints (ICCs) indicate that there must be a continuous path from 
every component of one type to every component of another type, of specified connection 
type(s), and optionally including other components en route. 

These constraints may refer to component and connection types at any level in the appropriate 
hierarchy, allowing for both “OR” and “AND” constraints. Numerical aspects of these constraints are 
specified as ranges with a minimum and a maximum for the quantity concerned. The set of component 
types, connection types and constraints for a particular problem is collectively termed a “schema”.  
Figure 1 shows a graphical representation for the entities and relations used in this method. The lower 
section of the diagram shows components and connections that define a particular architecture. 
Components are represented as cubes, while connections are represented as concentric circles; arrows 
link the component at the “source” end of the connection to the connection itself, and the connection 
to the “sink” component. The directionality of a connection is recorded in the corresponding 
connection type. Components and connections are linked by arrows to (concrete) component and 
connection types in the top section of the diagram. Since models of specific architectures often appear 
on a separate diagram from the schema, in the figure the components and connections are linked back 
to their types using hyperlinks, small white numbered circles (hyperlinks with matching numbers 
indicate the two ends of the same link). The top section also shows the constraints that, together with 
component and connection types, define a schema. Component number constraints are by default 
incorporated into component types; other constraint types are linked by arrows to the relevant 
component and connection types. Numerical ranges use “*” to indicate an unlimited upper bound. For 
instance, the direct connection constraint in Figure 1 states that every component of type “Component 
Type 1” must have exactly 1 connection of type “Connection type” to a component of type 
“Component type 2”, but the cardinality in the reverse direction is unrestricted. In this case, the 
architecture in the lower part of the diagram satisfies all the constraints. 

 
Figure 1. Elements of the graphical representation for architectures and schemas 

3.2 Computational design synthesis algorithm 

If represented in the form described in the previous subsection, alternative product realisable 
architectures may be synthesised using computational methods. The component types and connection 
types in a schema define a set of potential architectures (each of which may or may not be realisable). 
This set forms a state space, since any architecture can be reached from any other architecture 

Schema 
definition 
elements 

Architecture 
definition 
elements 
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(including the “empty” architecture containing no components or connections) by sequences of 
elementary operations of four types: 

 Removing an existing connection; 
 Removing an existing component (in which case all connections associated with it must also 

be removed); 
 Adding a component of one of the types defined in the schema; 
 Adding a connection of one of the types defined in the schema, between two existing 

components. 
Synthesising realisable architectures thus involves searching this state space to find goal states – 
architectures that satisfy all the constraints in the schema. In practice, since there may not be 
restrictions on the number of components in an architecture, the state space may be infinite – thus it is 
necessary to specify a maximum search depth for each type of elementary operation (a maximum 
number of those operations to allow when carrying out the search). 
State space search problems can be solved exhaustively using systematic search methods [Russell & 
Norvig 2003]. Alternatively, stochastic methods can be used to sample the space of architectures: a 
random number of random elementary operations up to the specified maximum search depth are 
performed, after which the resulting architecture is tested against the constraints. This is less efficient 
than systematic search, but in the case of large problems the overhead of systematic search can 
become prohibitive and outweigh its advantages in efficiency. 
Depending on the specific problem, either the complete set of elementary operations may be used or a 
subset may be chosen. For instance, if it is desirable to conserve the set of components in the 
architecture, synthesis may be restricted to only adding and removing connections. 
The starting point for the state-space search may be: 

 The minimal set of components that satisfies the CNCs, in the case of original design; or 
 A model of an existing architecture, potentially modified before synthesis by manually 

removing components or connections, in the case of incremental design. 

3.3 Evaluation of generated architectures 

Once generated, the architectures may be evaluated objectively using metrics to support the designer 
in choosing which should be taken forward to detailed design.. 

Table 2. Metrics used to evaluate product architectures 

D-complexity M-complexity C-complexity 
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Components with more 
interfaces have been shown 
to require more redesign 
work on average [Sosa et 
al., 2005]. Thus, a metric 
for the design complexity, 
D(A), of an architecture A 
containing n components is: 
the mean of the number of 
connections per component 
zi for all components i in A. 

The manufacture cost of a product may 
be divided into the manufacture cost of 
its components and the cost of 
assembling them. Without additional 
information about the relative costs of 
parts and assembly operations, a metric 
for the manufacture complexity, M(A), of 
an architecture A containing n 
components is: the sum of the number of 
components n and the number of 
connections per component zi for all 
components i in A (halved to avoid 
double counting). 

The likelihood of change 
propagating between two 
components in a product is inversely 
related to the graph distance between 
the two components in the 
architecture [Keller et al., 2006]. 
Therefore, a metric for the change 
complexity, C(A), of an architecture 
A containing n components is: the 
reciprocal of the mean of the graph 
distances dij between all pairs of 
components i,j in A. 

A metric is defined as a function that assigns a numerical value to an architecture; by convention, 
“better” architectures return smaller numerical values. In this paper, architectures are evaluated using 
three graph-theoretical metrics, similar to those used by Lindemann [Lindemann et al. 2008], 
corresponding to different aspects of quality important to the product’s manufacturer: the complexity 
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of designing the product (D-complexity), complexity of manufacture (M-complexity) and the 
complexity of making changes to it (C-complexity). These metrics are described in Table 2 

4. Assessing the impact of legacy architectures on new designs 

4.1 Design problem used in computational experiments 

To investigate the influence of legacy architectures, the synthesis method described in section 3 was 
applied to a realistic design problem: redesigning a domestic “cylinder” or “canister” vacuum cleaner.  
Until recently, most domestic vacuum cleaners used physical filtration to separate dust from the 
stream of air, either in the form of a reusable cloth filter or a disposable bag. However, in recent years 
vacuum cleaners have begun to be equipped with cyclonic dust separators which use centrifugal 
effects in a “cyclone” of rapidly-rotating air to separate and collect the denser dust. Such technology 
has a number of advantages and is attractive to consumers: thus, many vacuum cleaner manufacturers 
who formerly made filtration-based products have brought out models that use cyclonic dust 
separators. This example considers the design of the product architecture for a cyclone-based cylinder 
vacuum cleaner, and the effect of basing it on the architecture of an earlier filtration-based cylinder 
vacuum cleaner. Such a problem is an example of “technology infusion”, where a new technology is 
added to a product class of which instances have already been designed using a previous technology, 
and is of a level of complexity similar to design problems that might be encountered in practice. 
In order to construct a schema and “starting point” architecture for this research, 4 vacuum cleaners 
were acquired and dismantled to gain an understanding of the space of possible architectures, as 
described in [Wyatt et al., 2009b]. One in particular, the Sanyo SC-N200 (a filtration-based cylinder 
vacuum cleaner), was chosen to represent the original product to be modified through incremental 
design. The representation described in subsection 3.1 was then used to construct a model of the SC-
N200 architecture  and a schema for the problem, shown in Figure 2 and Figure 3 respectively (using 
the graphical notation of Figure 1).  
In principle, there are many ways in which the architecture of a vacuum cleaner can vary – from the 
order in which air flows through different components to the way in which the cable is stored. In this 
case, to keep the problem reasonably tractable it was assumed that only the architecture of the front 
section of the vacuum cleaner base unit requires redesign to accommodate the cyclone; the design of 
the architecture of the hose and tools on the one hand, and the motor and power supply on the other, 
were assumed to be separable from the cyclone incorporation. Thus the air flow starts at the “Hose 
socket” and finishes at the “Rest of vacuum cleaner”. The “bag” component was removed from the 
model used as the synthesis start point, and to avoid unnecessary computational expense a “cyclone” 
component was connected into the air flow path in its place.  

 

Figure 2. (Left) A picture of the Sanyo SC-N200. (Right)  
The starting architecture used for the experiments 
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However, the “cyclone” component represents the circulating volume of air itself, and must be 
“comprised” by at least two “mouldings” (injection-moulded plastic components); the synthesis of this 
arrangement was left as the main problem for the computational methods to solve. Even this relatively 
constrained architecture design problem required significant effort to formalise, as shown by the 
complexity of Figure 3 for instance, while most of the component types correspond to physical 
entities, the “Compartment” component type was found necessary to model the airtight sections of the 
vacuum cleaner. 

 
Figure 3. The schema used for the experiments 

4.2 Experiments performed 

Four experiments were carried out, as shown in Table 3. In experiments 1-4, simulating incremental 
design with increasing amounts of design freedom, synthesis started from the SC-N200 model shown 
in Figure 2 (with 9 components and 13 connections), with amounts of backtracking ranging from none 
in experiment 1 to removal of up to 3 components and 6 connections in experiment 4. Experiment 5, 
simulating original design, used synthesis from a “minimal” start point – in this case, a 4-component 
architecture consisting of 1 “Moulding”, 1 “Filter”, 1 “Hose socket” and 1 “Rest of vacuum cleaner”. 
 The maximum forward search depths were chosen based on an architecture observed in one of the 
other vacuum cleaners dismantled during the composition of the problem, which had 11 components 
and 18 connections. To allow for greater variety in the generated designs, the overall maximum 
component and connection numbers were defined to be 1 greater than this size (i.e. 12 components and 
19 connections). Where synthesis was carried out with no backtracking (runs 1 and 5), the search 
depths were therefore set to allow architectures up to this size. In runs 2, 3 and 4 varying amounts of 
backtracking were allowed, and the forward search depths were increased accordingly.  
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The software used to perform the experiments was a Java implementation of the computational design 
synthesis method described in section 3, using the CAM (formerly P3) platform [Wynn et al. 2009]. 
CAM provides a user interface for constructing general network models, with an extensible plug-in 
architecture to allow analysis functionality to be added to the software. The categories of element 
described in subsection 3.1 and the graphical notation shown in Figure 1 were specified using a meta-
model, while the synthesis and evaluation algorithms were implemented as executable plug-ins. 
Stochastic synthesis was used in all cases, as the scale of the problem made systematic synthesis 
impractical. 500,000 synthesis attempts were performed for each experiment. Experiments 1-4 each 
took approximately 10 hours on a workstation PC, while experiment 5 took approximately 22 hours. 

Table 3. Synthesis experiments performed 

# 
Synthesis 
start point 

Maximum search depth Number of 
synthesis 
attempts 

Number of 
architectures 

produced 
Removing 

components 
Removing 

connections 
Adding 

components 
Adding 

connections 

1 SC-N200 0 0 3 6 5x105 1101 

2 SC-N200 1 2 4 8 5x105 368 

3 SC-N200 2 4 5 10 5x105 296 

4 SC-N200 3 6 6 12 5x105 292 

5 Minimal - - 8 19 5x105 835 

4.3 Results 

The synthesised architectures were evaluated using the metrics described in subsection 3.3. Table 4 
shows the minimum, maximum, mean and standard deviation of the values of each metric for each 
experiment; these are also plotted in Figure 4. Figure 5 shows three-dimensional plots of the results 
from each experiment. 

Table 4. The ranges (minimum, maximum, mean and standard deviation) of D-, M- and C-
complexity of the architectures found in each experiment 

# 
Synthesis 
start point 

D-complexity M-complexity C-complexity 

Min Max Mean 
Standard 
deviation

Min Max Mean
Standard 
deviation

Min Max Mean 
Standard 
deviation

1 SC-N200 1.55 1.90 1.82 0.09 26 31 28.5 0.9 0.33 0.38 0.36 0.01 

2 SC-N200 1.40 2.00 1.81 0.15 22 29 25.7 1.3 0.32 0.39 0.37 0.01 

3 SC-N200 1.25 2.25 1.94 0.18 18 31 26.0 2.2 0.30 0.41 0.38 0.01 

4 SC-N200 1.38 2.57 2.08 0.24 19 34 26.7 3.1 0.32 0.43 0.38 0.02 

5 Minimal 1.25 2.71 2.19 0.30 14 29 24.2 2.6 0.32 0.43 0.40 0.02 
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Figure 4. The variation of D-complexity, M-complexity and C-complexity in the synthesis 
experiments. Error bars on the mean series show the standard deviation 
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Figure 5. Three-dimensional plots of the D-complexity, M-complexity and C-complexity of the 
architectures from each experiment. (Left) All results; spheres indicate experiments 1-4, light 

grey for experiment 1 shading to dark grey for experiment 4; black crosses indicate experiment 
5. (Right) Polyhedra show convex envelopes of experiment 1 results (shaded, black wireframe) 

and experiment 5 results (grey wireframe), and spheres show all individual results from 
experiment 2 (grey spheres) 

4.4 Analysis of results 

For the case of synthesis starting from a given architecture, Table 4 and Figure 4 show that the ranges 
of metric values exhibited by the synthesised architectures usually increase with increasing backtrack 
depth. In particular, when comparing experiment 4 (greatest backtrack depth) with experiment 1 
(smallest backtrack depth), there is an 11% improvement in minimum D-complexity (1.38 vs. 1.55), a 
27% improvement in minimum M-complexity (19 vs. 26), and a 3% improvement in minimum C-
complexity (0.32 vs. 0.33). In addition, the range of D-complexity is more than 3 times larger in 
experiment 4 than experiment 1 (1.38-2.57 vs. 1.55-1.90), the range of M-complexity is 3 times larger 
(19-34 vs. 26-31), and the range of C-complexity is more than double the size (0.32-0.43 vs. 0.33-
0.38). This can also be seen graphically in Figure 5: in the left-hand plot the black spheres (results of 
experiment 4) are much more widely dispersed than the white spheres (experiment 1), and the right-
hand plot shows that adding a single backtracking step between experiment 1 and experiment 2 allows 
a much wider range of results. In addition, the left hand plot suggests that increasing the backtrack 
depth increases the range of architectures found “anisotropically” (increasing variety without 
favouring particular types of architecture). While the boundaries of the metric ranges do not expand 
monotonically from experiment 1 to experiment 4, in the case of the minimum values for all metrics 
and maximum M-complexity, this may be due to the stochastic nature of the synthesis and the 
decreasing number of successful results as the search space expands (1101 in experiment 1 down to 
292 in experiment 4). 
Based on the trends observed in experiments 1-4, it would be expected that synthesis “from scratch” 
would be the least constrained out of all the experiments, and thus would explore the widest range of 
architectures and return the widest range of metric values. This is reasonably well supported by the 
results of experiment 5: the minimum value of D-complexity from the results of experiment 5 (1.25) 
equals the minimum from experiments 1-4, and the minimum M-complexity (14) is lower than those 
found in all other experiments; however, the minimum C-complexity (0.32) is only lower than that 
found in experiment 1. Again, Figure 5 shows graphically that the results of experiment 5 cover a 
wider range than the results of experiments 1 and 2. Although the ranges of values obtained from 
experiment 5’s results do not encompass all the ranges from experiments 1-4, this may be due to the 
limited number of architectures obtained from the significantly larger search space to be explored in 
this experiment. In addition, the nature of the stochastic search algorithm unavoidably biases the 
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results towards architectures with fewer components and connections – thus the lower M-complexity 
values at both ends of the range are not unexpected, since this metric measures the number of 
components and connections in the architecture, while the long paths needed to obtain low C-
complexity values are not as common in small architectures.  

5. Implications, limitations and future work 

5.1 Impact of legacy architectures on quality of synthesised architectures 

The results reported in subsection 4.3 allow the research questions posed in subsection 2.1 to be 
answered as follows: 

1. To what degree does incremental design (using a previous design as the basis for a new 
product architecture) limit the achievable quality, compared with original design (designing 
without preconceived ideas of the solution’s form)? 

 Comparing the results of experiment 1 (pure incremental design) with experiment 5 (original 
design) shows that basing an architecture on a previous design can indeed constrain the 
maximum achieveable quality. 

2. If incremental design does limit achieveable quality, can the severity of the limits be reduced 
by allowing greater design freedom? 

 Comparing the results of experiments 1-4 (increasing backtrack depth in incremental design) 
shows that increasing the degree of design freedom in incremental design can allow the 
maximum quality to increase to values comparable to those attainable through original 
design. 

However, comparing the numbers of architectures synthesised in the different experiments highlights 
the fact that increasing the degree of design freedom (either within incremental design or by switching 
to original design) can increase the difficulty of finding solutions. Starting from an architecture that is 
known to be realisable facilitates finding other feasible architectures, although their quality may be 
reduced.  
The results suggest that in product architecture design, in addition to the tradeoffs between competing 
design objectives, there is also a tradeoff between the benefits of architecture conservation [Wyatt et 
al. 2009a] and the quality of the design: while restricting the scope of redesign can reduce costs and 
risks of development, it can also reduce the achievable quality. The effects of this tradeoff should 
therefore be borne in mind when making decisions about the redesign of complex products. 

5.2 Limitations and future work 

As noted in Table 1, the results were obtained from a simulation of a real design situation with a 
number of limitations. Firstly, structural metrics were used to evaluate the resulting architectures as a 
proxy for “design quality”. The structural metrics have the advantage that they may be calculated for a 
product architecture without further information about the architecture’s constituent elements. 
However, although they theoretically capture aspects of the process used to design and construct the 
resulting product, they are not readily interpretable in concrete terms. Calculating concrete values 
from an architecture is challenging, since the architecture itself does not contain the information 
required to do so (thus values must be estimates). Nonetheless, an important future direction for this 
work is to investigate methods for estimating such concrete performance values in order to 
demonstrate effects in a measureable way. 
In addition, the analysis in this paper has used backtrack depth within computational design synthesis 
as a proxy for “design freedom”. In particular, this incorporates an assumption that increasing 
backtrack depth increases the maximum “distance” of the resulting architectures from the starting 
point. Although the results in subsection 4.3 suggest that the diversity of architectures increases with 
increasing backtrack depth, ideally this should be demonstrated explicitly, for instance by using graph 
edit distance as a similarity measure. Combined with concrete performance evaluation described in the 
previous paragraph, this would enable true quantification of the degree to which novelty allows better 
performance, as described in subsection 5.1. 
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While this work has considered the range of attainable metric values at different backtrack depths, it 
has not attempted to measure whether increasing the backtrack depth provides a “better tradeoff” 
between the metrics (although Figure 5 suggests that this is the case). This is important because in 
general there will be many objectives in a design problem and the overall solution will be a tradeoff 
between them; thus, to show that increasing the backtrack depth would improve quality in a real 
design problem, it is necessary to demonstrate that doing so improves not only the attainable values of 
individual metrics but also the tradeoff between them. This could be formally defined using concepts 
of Pareto dominance: if Set A provides a “better tradeoff” between a set of metrics than Set B, Set A’s 
Pareto front with respect to those metrics should dominate Set B’s Pareto front with respect to the 
same metrics. The quality of the tradeoff improvement could then be measured by the fraction of Set 
B’s Pareto front dominated by Set A’s Pareto front. Such a definition is objectively measurable, and 
carrying out this analysis represents another future direction for this research. 
To improve the quality of the data used in this experiment, in particular the variation due to its 
probabilistic nature as noted in subsection 4.4, larger numbers of stochastic synthesis runs could be 
carried out. Alternatively, systematic search could be used (with potentially some form of decimation 
to reduce the fraction of the search space explored), or optimisation against one or more of the metrics, 
for instance using simulated annealing [Shea et al. 1997]. In addition, the formalisation of the design 
problem could be improved to allow for a wider range of solutions and to reduce the incidence of non-
realisable architectures, and similar analyses could be conducted on other example problems to test 
generalisability. 
Finally, there is the issue of how the insights gained from this analysis may be made more useful for 
design practice. Improving the concreteness and generalisability of the analysis, as described above, 
may allow estimation of rule-of-thumb values for the quantitative impact of legacy architectures on 
new designs. Such values may be used to improve decision-making when planning new product 
development. At a more detailed level, in cases where design effort is limited and must be deployed in 
the most efficient manner, applying the methods from this paper to the design problem in question 
may be able to identify the specific architecture changes that would give the greatest quality 
improvement. 

6. Conclusions 
Many new designs are based on previous products, especially at the product architecture level, due to 
the costs and risks of making changes to the design and cognitive difficulties in generating alternatives 
to known architectures. However, such reuse of legacy architectures can potentially impact the quality 
of the design of new products. This paper has investigated the potential impact of incremental rather 
than original design, and whether it can be mitigated by increasing “design freedom”, using 
computational design synthesis of product architectures for a consumer vacuum cleaner. The results 
show that incremental design restricts the achievable “quality” (evaluated using structural metrics) 
compared with original design, but increasing the backtrack depth (increasing “design freedom”) 
produces architectures that perform better against all metrics individually and potentially improves the 
overall tradeoff between metrics. Future work is needed to increase the concreteness of the analysis, 
by using technical or process performance evaluation and direct measurements of “distance” of 
architectures from the starting point, and to generate general insights and specific methods that may be 
used to guide decision-making during the design process. 
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