INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED'09
24 - 27 AUGUST 2009, STANFORD UNIVERSITY, STANFORD, CA, USA

ASSESSING IMPACT ANALYSIS PRACTICE TO
IMPROVE CHANGE MANAGEMENT CAPABILITY

Malia Kilpinen', Claudia Eckert’ and P John Clarkson’
(1) University of Cambridge, UK (2) Open University, UK

ABSTRACT

Impact analysis (1A) methods and tools support designers in determining the consequences of design
changes. As such, the risk of unanticipated propagation of changes, in which an initiating
modification induces a set of additional, knock-on changes, can be managed through obtaining high-
quality IA results that are complete, correct, and clear. Although a variety of IA techniques are
proposed in academic publications and even implemented in commercial tools, the use of such IA may
not be consistent in practice and can be influenced by the product development process. This paper
reports on a method to systematically elicit and assess [A practice in systems and software engineering
to identify trends and gaps in change management. Qualitative and quantitative results from the
application of this method at an aerospace company are discussed, leading to the proposal of future
work to support and extend the method.

Keywords: Change impact analysis, change propagation, rework

1 INTRODUCTION

Understanding the consequences of design modifications is a key element to effective change
management. Without grasping the scope of modifications, changes can often unexpectedly propagate
and lead to rework, affecting product development budgets and planning time scales. As such, change
impact analysis (1A) techniques have been developed to support designers in scoping modifications.
For example, the Change Prediction Method (CPM) tool calculates and visualizes the consequences of
design modifications using a risk-based assessment [1]. Other methods in systems and software
engineering, which can be classified into three types, including traceability, dependency, and
experiential, similarly aid designers in determining the effects of changes [2].

However, the application of such IA methods and tools is not always promoted or prescribed within
companies, and, subsequently, IA techniques may not be systematically used in practice. In turn, the
quality of IA results can vary directly, given that IA techniques range in rigor; some IA techniques
may not as exhaustively search for high-order knock-on effects as others, and the corresponding 1A
results may only indicate fractions of the necessary changes stemming from an initiating modification.
Alternatively, if A tools become disused by some design team members during product development,
the information they contain can become irrelevant and out-of-date as the design evolves. In this case,
the tools unknowingly may produce unreliable IA results when used, indirectly causing variation in
the IA quality within a company.

Understanding the available IA methods and tools (Section 2) and how designers use them is integral
in assessing a company’s capability to manage design changes. Based on observations during an
empirical study at an aerospace company (Section 3), a method was devised to systematically elicit
and analyze A practice within their software design process (Section 4 and 5). This method entails
identifying the IA techniques used for different types of changes and determining the influences
affecting the 1A results obtained. Investigating the trends in this data collected depicts the strengths of
the company’s 1A capability and areas for improvement. Quantitative and qualitative results from
applying this method within the aerospace company are discussed (Section 6). This paper concludes
by proposing how this method can be supported through change databases and suggests further work
on how to assess a company’s change management capability (Section 7).

ICED'09 1-205

2 CHANGE IMPACT ANALYSIS
In previous research into change IA for software-intensive systems, we identified three primary
categories of IA techniques, including traceability, dependency, and experiential 1A [2]. Figure 1
gives examples of each of these types of IA from literature, which are discussed below. This
classification extends the previous categorization of IA by Bohner and Arnold [3], which only
recognizes traceability and dependency IA.

Design
or Change
Documentation

Requirement
or Software
Design Models
[6]

Software
Architecture
or Code
[31

Requirement
Traceability
Relationships
[4]

Individual Design

Engineering or Change
Judgement Review Meeting
18] Informal m

Team
Discussions
[8]

Figure 1. Types of IA techniques

Traceability IA uses the mapping of product requirements to their respective detail specifications and
designs within subsystems (e.g. system requirements are linked to more detailed software
specifications, which also trace to software design artifacts, such as models, documentation, or code
files). Given a change to a system requirement or design artifact, the captured traceability
relationships extending from the affected element can be identified. These traces, which also facilitate
completeness in product design documentation, indicate the possible system requirements,
specifications, or design areas to which a change may propagate. Several academic [4] and
commercial computer tools (e.g. Borland Caliber-RM" and Telelogic DOORS®) support the
automation of this style of IA by structuring a database of traceability relationships among
requirements and design artifacts. Other forms of design or change documentation not organized in
such a database can also be used for IA by manually searching references between and within
documents [5]. However, this search process can be difficult to do exhaustively for complex designs.
Dependency IA is another means to investigate the consequences of changes. In software, capturing
linkages between variables, logic, modules, etc. within software models and code allows for a detailed
analysis of the knock-on impact of a modification. The dependencies identified in software design
models [6] or actual code [3] can be used to uncover additional design areas affected by an initiating
change. This IA may be automated or performed manually, but tends to focus on specific, low-level
changes rather than high-level modifications, which traceability IA could assess. Similarly, the CPM
proposed by Clarkson et al. [1] has been applied to mechanical systems to perform dependency IA by
analyzing the linkages between system components.

Experiential IA is an additional style of determining the impact of a design modification. Engineers
may perform experiential IA by discussing a proposed modification within the design team and using
their collective [7] or individual [8] understanding and experience with the design to estimate the
consequences of the change. As such, experiential IA can identify tacit design dependencies and,
therefore, mechanisms for change propagation through expert knowledge typically not captured by
models or databases. However, this form of IA may be unsystematic by nature, potentially neglecting
means of change propagation. Nevertheless, it does not exclude the implementation of traceability and
dependency IA, and vice versa.

1-206 ICED'09

3 EMPIRICAL STUDIES

The entire range of IA techniques depicted in Figure 1 was observed to be available for software
development at an aerospace company during an empirical study. In this firm, embedded software
implements the algorithms and logic of several electronic controllers within predominantly mechanical
products. These controllers interact with mechanical actuators and electronic sensors to manipulate
the product and ensure safe operation. Given that the control system platform is adapted to extend the
aerospace company’s product line, as opposed to being designed from scratch, design changes drive
their software development process. As such, supporting a range of complementary IA techniques can
enable performing thorough change assessments to obtain high-quality IA results, which reflect
necessary knock-on modifications and rework, and, consequently, augment the company’s ability to
effectively manage changes throughout the product development process. During the early phases of
development, changes tend to be assessed through experiential IA when most information is not yet
captured in formal documentation and databases for traceability and dependency IA. As projects
progress, traceability and dependency 1A can more readily be used.

The first, exploratory phase of the empirical study at the aerospace company aimed to understand 1A
as prescribed and practiced within software development. In 26 semi-structured interviews with
designers, managers, and design process engineers, lasting between 1 and 2 hours each, the
circumstances surrounding the application of IA techniques were discussed. However, an early
observation illuminated the fact that interviewees could not systematically and objectively discuss the
use of IA. They would often fixate on their preferred techniques rather than covering the range of IA
techniques used. Furthermore, typical IA practice could not be extrapolated or data mined from other
sources, given that the implementation of IA tasks within the software design process was not
specifically prescribed and no record was kept regarding the use of these techniques in practice (e.g. in
a database that logs proposed engineering changes). Similar difficulties were also encountered during
an empirical study at a telecommunications company, consisting of 9 additional semi-structured
interviews, lasting approximately 1 hour each, and a 3-day design workshop. Consequently, a method
to systematically discuss with system and software designers the IA techniques applied and the
influences affecting the IA results obtained was developed (Section 4) and implemented in the second
phase of the empirical study within a project group at the aerospace company (Section 5).

4 A METHOD TO ASSESS IMPACT ANALYSIS PRACTICE

During the first, exploratory phase of the aerospace study, designers were observed to be able to
readily discuss the IA techniques used for specific changes. As opposed to describing IA practice in
general, they could recall and report their actions in these particular situations. As such, the method
developed systematically elicits the IA techniques applied to specific instances of system and software
design changes. Accordingly, a range of different types of changes must be elicited to enable a
holistic view of 1A practice. For example, if only high-level requirement changes and the associated
IA implemented are discussed with designers, the data collected will skew the perception of 1A
practice obtained. The method developed characterizes different types of changes according to
attributes, including source, direction, level, formality, and timing (discussed in Section 4.1).
Different changes have different ratings for each of these attributes, and discussing changes with the
range of attribute rating permutations allows for systematically covering IA practice [9].

Besides determining the IA techniques performed and given that the method developed aims to
analyze the effectiveness of IA practice, the quality of the IA results obtained also should be
estimated, and additionally eliciting the influences affecting these results augments this assessment [2].
Thus, the method consists of 3 primary data-collection steps conducted through interviews with
system and software designers to elicit a range of specific changes each with different attribute ratings:

1. Rate a change’s attributes (Section 4.1),
2. Elicit the associated IA techniques used (Section 4.2), and
3. Estimate the IA result quality and determine the influences affecting these results (Section 4.3).

The method then analyzes IA practice by comparing the 3 categories of data collected in each of these
3 steps against each other (Section 4.4). These steps are detailed in the following sections as
employed for the aerospace company’s development process. Nevertheless, this method is envisioned
to be applicable to other companies in that other firms even in different industries similarly use a

ICED'09 1-207

systems engineering approach to software development and make a variety of IA techniques available.
However, customization of the attributes (Section 4.1) may be required for such application in order to
appropriately describe the specific context of system and software design changes.

4.1 Step 1: Rate a change’s attributes
A change’s attributes (detailed in [9]), including source, direction, level, formality, and timing, are
derived from asking the following corresponding questions:

Source — Who requested the change?

Direction — Who implemented the change?

Level — What was the change requested? / Where (on what level) was the change implemented?
Formality — How was the change requested?

Timing — When was the change occurring in the context of other changes?

Responses to these questions by designers can characterize noteworthy aspects of a design change,
which, in turn, can be correlated with the IA techniques implemented. The source, direction, and level
attributes aim to capture if the change was requested across an interface and on what level of detail the
change was actually implemented. Certain IA techniques may be more suited for changes contained
within software code, while others may be more appropriate to estimate the consequences of high-
level requirement modifications occurring across both the system and software designs. As such,
these questions account for the difference in IA techniques applied for software code versus system
requirement modifications, for instance. The formality attribute describes the process by which a
change was requested (e.g. through a formal, documented change request or only in passing discussion
between designers) and suggests any barriers preventing the use of certain IA techniques. For
example, as observed in the empirical studies, a lack of documentation of a change often can limit the
usability of traceability and dependency IA since insufficient information about the modification is
provided for input into these analysis methods. Finally, the timing attribute question determines the
existence of interdependent changes and, correspondingly, estimates the comprehensiveness or rigor
of IA required for high-quality results.

Source of Change:
Who requested the change?

External Stakeholder System Designer Software Designer

Direction of Change:
Who implemented the change?

External Stakeholder System Designer Software Designer

Level of Change:
What was the change requested?
Where was the change implemented?

':l:o:ijlgll;lr System Software Software Software
'gh Requirement Specification Detail Design Code
Requirement
Formality of Change:
How was the change requested?
Notification and/or Informal Verbal No Notification
Documentation Documentation Notification or Doct i
of Change of Change of Change of Change
by Change by Local Change by Local Change by Designer or
Authority Stakeholders Stakeholders Stakeholder
Timing of Change:
When was the change requested in
the context of other changes?
No Planning Identification Partial Identification| Unknown
Coupling of Coupling of Coupling of Coupling Coupling
between between between between between
Changes Changes Changes Changes Changes

Figure 2. Categories for source, direction, level, formality, and timing attributes

1-208 ICED'09

Based on the first, exploratory empirical study phase, categories to qualify the designers’ responses
for each of the above attribute questions were constructed for the aerospace company. For example,
the categories of the source attribute consists of external stakeholder, system designer, and software
designer (in Figure 2) and suggests the expected range of responses. (In this case, external
stakeholders include the company’s mechanical and hardware designers as well as customers of the
product, all of whom are external to the software design team.) The collection of many examples of
changes in the second empirical study phase supported the refinement of the categories and their
descriptions. Figure 2 depicts the final categories for the source, direction, level, formality, and timing
attributes. Notably, the source and direction attributes use the same categories since the stakeholders
shown capture all possible change requesters and implementers. These categories are envisioned to
require some customization for other companies using similar systems engineering development
processes, but with alternative team structures and interfaces than the aerospace company.

To complete step 1 in the method and qualify a change’s attributes, the interview with a designer
should cover all of the questions listed above. The responses gathered should be correlated with the
categories depicted in Figure 2. Figure 2 essentially provides a map to locate specific responses for
each attribute across the range of potential responses. Designers’ responses can then be quantified
based on their categorization and given ratings of high-medium-low (Figure 4). Thereby, the spectrum
of different types of changes elicited, as exhibited by different attribute rating permutations, can be
assessed (discussed in Section 5).

4.2 Step 2: Elicit the associated IA techniques used

For each specific change discussed, designers should be prompted to walk through each step of their
involvement — from change proposal to implementation to rework, if required. A list of IA techniques
available in the company should be available to the designer during this recollection for him or her to
highlight those techniques he or she used. The IA techniques applied can then be noted.

4.3 Step 3: Estimate the IA result quality and determine the influences affecting these
results

In the first, exploratory phase of the empirical study, influences affecting IA results were identified by

coding and analyzing interview transcripts (detailed in [2]). Figure 3 illustrates the influences

classified through this process. Technique influences systematically affect the process of applying 1A,

while task influences are primarily caused by situation-specific limitations on information, resource, or

time availability.

Technique Influences

« Partitioning:

Impact analysis is only conducted on part of
the system based on the defined system
architecture and design team interfaces.

« Synchronization:
Multiple applications of impact analysis are
not coordinated in terms of timing.

* Method Definition:
Methods for applying impact analysis
techniques are undefined or ambiguous.

* Process Conflicts:

Defined methods for applying impact analysis
techniques conflict or compete with other
prescribed processes.

* Over-Extension:
Tools for impact analysis are used for
conflicting purposes.

* Administration:

Tools for impact analysis involve careful
customization and require dedicated
resources for management.

Figure 3.

Task Influences

o Lack of Information:
Requirements or information for detail design
are unknown, incomplete, or uncertain.

* Ambiguity of Information:
Communication or representation of
requirements or information for detail design
causes uncertainty.

« Volatility of Information:
Requirements or information for detail design
are change frequently or unexpectedly.

« Magnitude of Information:

The design has many interdependent
requirements or design elements and is too
complex.

« Lack of Time or Resources:
There is time pressure or insufficient input
from stakeholders.

* Analysis Education:
There is a lack of training in the impact
analysis techniques and tools.

IA influences

1-209

Asking interviewees to rate the information, resource, and time availability on a high-medium-low
scale (e.g. no missing information, some missing information, or little information available,
respectively) and describe the rationale for this rating induces discussion about any IA task influences
present for a change. The designers can then be asked to estimate the quality of IA results obtained for
the change in light of these influences. This quality estimation can be captured by scoring the result
quality as high, medium, or low (i.e. no emergent changes expected, some emergent changes expected,
or a significant number of emergent changes expected, respectively) and should reflect the overall
understanding of change impact if more than one IA technique is used.

Invariably, IA technique influences can also be derived through the discussion of their ratings of
information, resource, and time availability, given that even high information, resource, and time
availability can still produce low-quality IA results because of the change process implemented. For
example, there may be enough information, resources, and time for a requested change; however, the
traces or dependency relationships in communal databases for IA may be out-of-date, systematically
causing incomplete, low-quality IA results. In this case, the IA applied could be affected by the
process conflicts influence (Figure 3) in that the database could also be subjected to configuration
management procedures, which only allow formally accepted changes to be entered into the database.
Hence, the captured relationships are not always up-to-date since change authorization can require a
significant amount of time as design work progresses. The configuration management procedures
conflict with the process of implementing IA necessary to produce high-quality results. As such,
prompting designers to provide additional, hypothetical ratings for IA result quality and their rationale
for this prediction given hypothetical increases in information, resources, and time availability ratings
can support this elicitation of IA technique influences.

Therefore, to complete step 3 in the method, a change should be rated on a high-medium-low scale for
information, resource, and time availability as well IA result quality and the rationale for these rating
discussed. Then, the information, resources, and time parameters should each individually be changed
from their original scores to high ratings (if they were not already scored as high), inducing additional
hypothetical ratings of the IA result quality by the designers. Then, all of the parameters should be set
to high, and the interviewees should provide a rating for the expected IA result quality and their
rationale in this optimal scenario. This rating exercise provides a basis for discussion from which the
IA influences present can be noted. Notably, the subjectivity of interviewees affects the ratings
obtained. However, given that the discussion of the reasoning behind these ratings is used to derive
the IA influences present and their frequency of occurrence, the subjectivity of the ratings does not
directly affect these results obtained, but facilitates the discussion of IA influences.

4.4 Step 4: Compare data collected in previous 3 steps

The 3 categories of data collected (the change attribute ratings, the IA techniques applied, and the 1A
quality and information-resource-time availability ratings) in the previous 3 steps can be compared
against each other to identify trends and make observations on IA practice. Specifically, a category of
data can be compared against another by mapping the similarities and differences in how elicited
changes split across the specific data fields collected in each category. In this manner, three
comparisons can be made:

o The IA techniques applied vs. the change attribute ratings
e The IA techniques applied vs. the IA quality and information-resource-time availability ratings
e The change attribute ratings vs. the IA quality and information-resource-time availability ratings

In addition, the IA techniques applied can be compared against the range of IA techniques available to
make a final observation on the frequency of use of these techniques in practice.

5 METHOD APPLICATION AT THE AEROSPACE COMPANY

Elicitation of IA practice in the aerospace company occurred through discussing specific instances of
changes with 6 systems engineers and 7 software designers within a software development project
group. At the time of these interviews, the project only consisted of 17 system designers and 20
software engineers. Thus, about 35% of both the system and software design teams participated in this
IA practice study. These designers, as opposed to external stakeholders, who primarily requested
changes, were targeted since they actually employed the IA techniques for software modifications.

1-210 ICED'09

The interviewees discussed changes they personally worked on implementing, and, thus, they can be
considered experts on the IA details of these design modifications.

During the interviews, while all of the attribute questions within the method (i.e. in step 1) were
covered for each change discussed, the interviewer classified the responses regarding the type of
change alone according to the high-medium-low attribute ratings shown in Figure 4. This reduced the
time required for the interview to explain each of the categories and then perform the ratings. The
division in the source, direction, and level attributes into high, medium, and low ratings is based on the
roles of the system and software designers in the aerospace company and their responsibility for work
products. The timing and formality partitioning is created based on the extremes of these attributes as
observed in the aerospace company.

M High B Medium [OLow

Source of Change:
Who requested the change?

Software Designer
Direction of Change:
Who implemented the change?

Software Designe
Level of Change:
What was the change requested?
Where was the change implemented?

Software Software
Detail Design Code

Formality of Change:
How was the change requested?

Verbal No Notification
Notification or Documentation
of Change of Change

| by Local Change by Designer or
Stakeholders Stakeholder

Timing of Change:
When was the change requested in
the context of other changes?

Unknown
Coupling

Changes

Figure 4. Low-medium-high ratings for change attributes (from Figure 2)

After performing several interviews, the types of changes collected, identified by the variety in
attribute permutations, were analyzed in terms of the range of attribute combinations possible,
suggesting the breadth of the IA covered in the interviews. Given that certain attribute combinations
did not occur, they were inquired about in subsequent interviews. Specific questioning revealed many
of the interviewees considered some permutations non-existent given the structure of the aerospace
company (e.g. software designers typically do not directly deal with high-level requirement changes),
eliminating the total number of possible attribute combinations. Extreme attribute ratings for both
formality and timing also did not occur during the discussions and were specifically prompted for in
subsequent interviews. However, these design changes with such extreme attributes could not be
found. Not many changes occurred without any or with perfect formality or synchronization. As
such, this elicitation method presented does not necessarily ensure capturing these extreme cases, but
systematically encompasses the range of IA techniques typically applied for changes.

In total, 42 change cases were volunteered by interviewees as examples (50% from systems engineers
and 50% from software designers) and discussed in terms of change attributes and IA techniques
performed (i.e. step 1 and 2 in the method). Subsequently, only 23 of these changes were rated for IA
quality as well as information, resource, and time availability and the rationale for these ratings
discussed (i.e. step 3 in the method). Not all of the initial 42 changes were covered because this
number of ratings would take a considerable amount of time for each interview. Changes were

ICED'09 1-211

selected that included the broadest range of IA techniques reportedly implemented by the interviewee.
Occasionally, interviewees suggested replacement changes to cover a broader range of IA techniques
than initially discussed for step 3 in the method. In this case, the information, resources, and time
parameters were rated, and then the change type attributes and the IA performed of these substitute
changes were elicited. These additional changes were not included in the original set of 42 changes
since they were not always discussed as thoroughly as this initial set.

6 IMPACT ANALYSIS PRACTICE AT THE AEROSPACE COMPANY

System and software designers at the aerospace company have 11 distinct IA techniques available for
their use. These techniques fit into the example categories illustrated in Figure 1. Specifically,
traceability IA can be performed through:

e An automated requirement traceability tool,
e Manually following traces in requirement and design documentation, or
e Manually using relationships captured in a data dictionary.

A data dictionary is a specialized traceability database that captures the relationships between
variables and their use across a design in documentation, models, and code [10]. Given a change to
the name, meaning, or use of a variable, the modification can be propagated throughout the design.
Dependency IA techniques available to system and software designers include using:

An integrated software design model,
Models of individual software design areas,
Software UML model, or

Software code.

Finally, experiential IA can occur through:

Formal design review meetings,
Integrated product team meetings,
Informal discussions, or
Individual engineering judgment.

By comparing the categories of data elicited from the interviewees, observations on how these
available IA techniques are used in practice can be identified (i.e. step 4 in the method).

6.1 Observation 1: Several IA techniques are not implemented in practice

By contrasting the IA techniques available and those reported applied to the 42 changes discussed,
several IA techniques are observed not to be used. Specifically, the requirement traceability tool, data
dictionary, and the integrated software design model were not used for IA (Figure 6). Discussions
with designers during the first empirical study phase also suggested the abandonment of these
techniques. In the case of the traceability tool and data dictionary, interviewees indicated they did not
know that these IA techniques existed, and they also suggested the information in the integrated
software design model was too out-of-date to provide useful IA results. As such, this data insinuates
that traceability 1A nearly always occurs through manually following traces in documentation rather
than through the automated traceability software tool. As previously indicated, this style of IA has
limitations for complex products since exhaustive searches for knock-on effects can be difficult to
perform. In turn, the data collected also reveals that designers most frequently apply dependency 1A
using the models of individual software design areas and experiential IA through informal discussions
(Figure 6), and, overall, experiential IA techniques are applied most frequently (Figure 5).

1-212 ICED'09

IA Techniques Used

79%

69%

57%

Frequency of IA techniques
used for change assessments

Traceability Dependency Experiential

Figure 5. Frequency of IA techniques used

Traceability IA Dependency IA
Techniques Used Techniques Used

Requirement
traceability tool
(automated)
0%

Integrated
software
design model

0%

Requirement
and design

Data dictionary Software UML
0% model Software
28% design area
models
65%

documentation
(manual)
100%

Experiential IA
Techniques Used

Formal
design
reviews
14%

Engineer

Integrated
product team
meetings

4%

Informal
discussions
60%

Figure 6. Range of IA techniques used

Based on these trends, improving the range of traceability IA techniques used can improve the
company’s change management capability, given that without a rigorous understanding of
relationships across design areas and their work products (i.e. system requirements and software
design artefacts, such as models, documentation, and code) unexpected change propagation can occur.
Furthermore, given the strong preference of designers to use models of individual software design
areas for dependency IA, advocating the use of the integrated software design model and maintenance
of the information it contains that captures dependencies across all design areas can support this aim.

6.2 Observation 2: System and software designers rely on different IA techniques

By cross-referencing the IA techniques applied for the 42 changes against the source, direction, and
level attributes of these modifications, patterns of the IA typically applied by systems and software
engineers can be identified, as shown in Figure 7. Systems engineers tend to receive change requests
from external stakeholders (e.g. mechanical or hardware designers and customers) and modify the
high-level software requirements as necessary. They then pass these modifications to software
engineers to implement in the detail design. Software designers do not interact directly with external
stakeholders due to the partitioning of work between system and software designers, and, given the
flexibility of software, the software design generally does not initiate changes in mechanical or
hardware designs. Systems engineers only occasionally ask other system designers to implement
changes as the high-level software requirements are partitioned into decoupled design areas.

ICED'09 1-213

However, the software architecture does not necessarily follow this partitioning, and design areas can
become coupled in the implementation of software code, affording means for change propagation.

Systems engineers perform
traceability, dependency,

and experiential IA for changes
from external stakeholders

External
Stakeholders

Software engineers perform
traceability, dependency,

and experiential IA for changes
from systems engineers

Systems
Engineers

Systems engineers perform
experiential IA for changes
from software engineers

Software
Engineers

Software engineers perform
dependency IA for changes
from other software engineers

Figure 7. IA techniques used by system and software designers

While traceability, dependency, and experiential 1A techniques are all applied by system and software
designers (Figure 7), these designers also tend to use different traceability and dependency IA
techniques. In particular, systems engineers focus on applying traceability IA with documentation for
high-level requirements and do not perform detailed dependency IA with software UML models or
code. In contrast, software designers execute traceability IA using the whole range of documentation
available, from requirements to detail design specifications, and dependency IA with all of the
available techniques (except the integrated model). However, they also tend to concentrate on the
detail design and most frequently perform dependency IA. As such, the high-level analysis performed
by systems engineers combined with the detail design assessment by software engineers can be very
rigorous in that the IA performed can thoroughly identify means for change propagation.
Nevertheless, the sharing of IA results between these engineers must be implemented in a timely
manner in order for this rigor to be achieved in that knock-on effects and upcoming changes must be
accounted for in subsequent IA tasks. Thus, the aerospace company’s capability to manage the risk of
unanticipated knock-on effects is highly affected by the organizational partitioning of the system and
software design roles.

6.3 Observation 3: IA technique and task influences may equally affect IA results

By comparing the IA techniques applied and the IA influences cited by designers, IA technique and
task influences (Figure 3) both affect the quality of IA results, despite applying a range of IA
techniques. Out of the 23 changes rated in step 3 of the method, designers designated that IA
technique influences primarily affected the IA results of 10 changes. In most of these instances, high
ratings for information, resources, and time produced mediocre IA result quality and were frequently
affected by partitioning and synchronization influences, as shown in Figure 8 and also suggested in the
previous section. The remaining 13 changes discussed were predominantly affected by IA task
influences, including insufficient information, resources, or time available to perform IA. Designers
most commonly cited task influences dealing with information as limiting factors (Figure 8). Given
the concurrent nature of the design process at the aerospace company, these ratings fit this expectation
of information availability. Even though a relatively small number of changes were rated, the
outcome of this rating exercise suggests that both IA technique and task influences can equally play
crucial roles in IA result quality and affect the company’s ability to manage the risk of unexpected
change propagation. The process of implementing IA techniques as well as the product information
input into IA should be considered to improve IA practice.

1-214 ICED'09

IA Technique Influences

Process
conflicts
0%

IA Task Influences

Lack of time
or resources

Analysis
education
0%

24%

Partitioning
36%

Lack of
information
46%

definition
14%

Volatility
Synchronization 12%

36%

Ambiguity
12%

Figure 8. Range of IA influences elicited

6.4 Observation 4: Less than ideal IA results tend to occur in changes requested
across interfaces

By comparing the attributes of the elicited 23 changes and their corresponding IA result quality
reported and IA influences, changes occurring across interfaces (i.e. the source and level attribute
ratings differ) had less than ideal IA results; specifically, the IA result quality associated with these
modifications was never rated as high due to the presence of IA influences. Changes requested by
external stakeholders tended to cause system designers difficulties in performing IA, while
modifications between system and software designers tended to challenge these engineers. These
changes were always linked to the partitioning and synchronization technique influences and task
influences dealing with information, except for one modification discussed. Consequently, improving
practices of obtaining, sharing, and updating information about changes between systems engineers
and software designers can address these predominant influences, support high-quality IA results, and
improve the company’s change management capability. Although the subjective IA quality reported
by designers was used to make this observation, analysis of a change database for another recent
project at the aerospace company indicates that unexpected, knock-on modifications often occur,
suggesting that IA quality is not high in practice. The data collected does not suggest a correlation
between the formality and timing attributes and the quality of the 1A results or IA influences present.

7 CONCLUSION

The 4 observations made (Section 6) through implementing the method developed (Section 4 and 5)
for a software development project group in the acrospace company all suggest that the partitioning of
the roles of systems and software engineers affects the quality of IA results obtained. Given that these
designers apply different IA techniques, varying perspectives on the impacts of changes are obtained.
Without sharing and communicating these results and the associated modifications to be made,
upcoming applications of IA can miss knock-on effects. As such, improving the sharing of
information about changes by system and software designers allows for improving their change
management capability.

Currently, personal communication is the predominant means to supply this overview in the aerospace
company; periodic design and change review meetings provide a formal process to discuss
modifications, but informal discussions tend to provide the source for up-to-date information about
changes and their interdependencies. However, available 1A techniques within this company can
support this aim. In particular, using the automated traceability tool or integrated software model can
allow system and software designers to broadly capture design information and perform IA across
design areas, potentially increasing the quality of 1A results. As such, a strategy to improve IA could
be to improve the use of these techniques. New IA techniques also could be developed to similarly fit
this need or even extend or integrate the IA features of these tools. Alternatively, more systematic and
frequent processes for communication about and analysis of changes between designers could be
implemented to improve IA quality and address the influence of partitioning. While information
availability, particularly from external stakeholders, may be difficult to improve in a highly iterative
development process for a complex product, improving the information sharing within the software
development team in the aerospace company can improve the handling of changes and reduce
internally generated rework.

ICED'09 1-215

Although the method developed and implemented has provided insight to the IA performed within the
aerospace company’s software design process, the effort to characterize 1A practice could be
streamlined. In particular, change databases, which often meticulously catalogue engineering change
requests and their impact (i.e. in terms of the product areas affected) and status (e.g. open, closed, or
rejected) throughout change processes, could be used to also capture IA techniques used and their
results. Additionally capturing such detailed information about the change processes implemented
(particularly in terms of IA) could allow for the verification of results from specific IA techniques
during product development and also could be used retrospectively to determine the quality of 1A
results based on the IA techniques used. Improvements to the IA methods and tools and the use of
these techniques by designers could then be planned through examining this information on change
processes in practice. Assessing data regarding change processes can be as useful as analyzing
information on product changes to improve change management capability.

The method presented to assess IA could also comprise a portion of a larger, more comprehensive
analysis of a company’s change management capability. Besides focusing on IA, other factors
affecting change processes can be analyzed. For example, the interfaces across the variety of
disciplinary design teams within a company could be investigated in terms of the flow of design
modifications. Similarly, the company’s product platform also could be examined for changeability in
such a comprehensive assessment. Depending on the scale of such assessments and collection of other
data on change management practice, the method could be tailored and integrated to meld with these
other means of analysis. As such, further work is necessary to identify the aspects of change
management practice to investigate and then develop methods to perform such assessments.

REFERENCES

[1] Clarkson, P.J., C. S. Simons, et al. (2004). "Predicting Change Propagation in Complex Design."
ASME Journal of Mechanical Design 126(5): 765-797.

[2] Kilpinen, M. S., C. M. Eckert, et al. (2007). Change Propagation at the Interface of System and
Embedded Software Design: Characterising Impact Analysis Tasks and Techniques. International
Conference on Engineering Design. Paris, France.

[3] Bohner, S. A. and R. S. Arnold, Eds. (1996). Software Change Impact Analysis. Los Alamitos,
California, USA, IEEE Computer Society Press.

[4] Dick, J. (2005). “Design Traceability.” IEEE Software 22(6): 14-16.

[5] Brown, W.J., H. W. McCormick, et al. (1999). AntiPatterns and Patterns in Software
Configuration Management. New York, New York, USA, John Wiley & Sons.

[6] Briand, L. C., Y. Labiche, et al. (2005). “Automated Impact Analysis of UML Models.” Journal
of Systems and Software 79(3): 339-352.

[7] Endres, A. and D. Rombach (2003). A Handbook of Software and Systems Engineering:
Empirical Observations, Laws and Theories. New York, New York, USA, Addison-Wesley.

[8] Ambler, S. (2002). Agile Modeling: Effective Practices for Extreme Unified Process. New York,
New York, USA, John Wiley & Sons.

[9] Kilpinen, M. S., C. M. Eckert, et al. (2007). The Emergence of Change at the Interface of System
and Embedded Software Design. Conference on Systems Engineering Research. Hoboken, New
Jersey, USA.

[10] Bray (2002). An Introduction to Requirements Engineering. Harlow, UK, Addison-Wesley.

Contact: Malia Kilpinen

University of Cambridge
Department of Engineering
Trumpington Street

Cambridge, CB2 1PZ

United Kingdom

Tel: +44 (0) 1223 748569

Email: mk432@cam.ac.uk

URL: http://www-edc.eng.cam.ac.uk

1-216 ICED'09

