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








This paper presents insights concerning a design methodology for mechatronic products. In general, it 
follows VDI Guideline 2206 [1] and proposes the use of the wellknown Vmodel at the macrolevel 
and the general problemsolving cycle of systems engineering at the micro level. The Vmodel is 
customized for the mechatronic systems under development and can be used to describe the whole 
system (the product) or the subsystems. The paper delivers a background on mechatronics engineering 
in its second section and presents two mechatronic development projects in the following ones. The 
third section is dedicated to the product development of an Industrial Robot while the fourth section is 
focused on an outdoor robot called MAX 3D. Both projects originate from an innovative driving and 
steering solution developed in one of the previous projects. In these two sections the robot designs are 
presented together with occurring design problems and observations made during the mechatronic 
product development of these robot designs. The description of these problems and observations 
serves for a further development of the development methodology for mechatronic systems. 



 
Nowadays mechatronic products gain more and more attention. This process is rather natural as 
expectations of the customers continuously rise. They want better, cheaper, and more advanced 
products. By more advanced products they often mean products that will have not only improved, but 
also additional functionalities. There are many products that are live facts of this tendency. In 1868 
Ives W. McGaffey invented and patented the first vacuum cleaner. It was a purely mechanical device 
with a manual air pump. It was difficult to operate this device as the air had to be manually pumped 
during work. Years later the electric motor was used to replace the manual pump making the device 
not purely mechanical but electromechanical, in same sense an early mechatronic product. Few years 
ago simple autonomous vacuum cleaners were developed using bumping sensors and some logic. 
Those devices are modern mechatronic products however the capabilities of future mechatronic 
products are far beyond those. When will intelligent vacuum cleaners capable of traversing and 
cleaning whole houses be available? How to design and develop such sophisticated products? 
Products that are composed of subsystems of different domains like mechanical engineering, 
electronical engineering, and software engineering are usually referred to as mechatronic products. 
Depending on particular products some fields might be developed better than others but all of them 
usually require specialists. Moreover, the specialists should be able to work closely together what is 
often difficult as they represent completely different fields of science. Usually the problem leads to 
different concepts of the complete solution which are specific to the main domains. This and many 
more reasons led to establishing a design methodology for mechatronic products. Following VDI 
Guideline 2206, the methodology basically consists of two procedure schemes: the general problem
solving cycle of systems engineering and the Vmodel [1], [2]. Stetter&Stania [3] propose to refer to 
the whole process as “Mechatronics Engineering”.  
Robotics is a field that fully exploits the term mechatronics: advanced mechanical construction, smart 
sensors, smart actuators, medium to large number of processing units, and sophisticated software 
system. Together, these items render a robot a very sophisticated mechatronic product. In The Systems 
Engineering Laboratory mobile robots are developed and thus an effective and efficient methodology 
is necessary in order to achieve the set goals. It was found that as general basis the Vmodel is 
appropriate to manage all designs in this laboratory. Besides the Vmodel, several other methodologies 
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and supporting tools are applied in order to be able to continuously improve the designs under 
development. 
The following section explains in more details what is the core meaning of the term mechatronics and 
elucidates the concepts connected with mechatronics engineering. urthermore, the Vmodel is 
described, it is discussed how it can be applied in a sensible manner, and some other supporting 
methods are mentioned. The theory will be then verified by practice presenting some designs carried 
out in the laboratory. 

 
In this section the principles and tools of mechatronics engineering are explained in order to serve as a 
basis for the more detailed discussion on the example of the mobile robots in section 3. The term 
“mechatronics” is usually used to describe a combination of mechanical engineering, electronical 
engineering, and software engineering. This rather simple definition in fact accurately reflects what 
mechatronics is, but mechatronics itself is even more complicated and complex. It is rather obvious 
that the complexity rises together with increasing complexity of the separate domains. However, 
together with a higher complexity in particular domains, higher crossdomain integration is required. 
This integration causes an additional increase of the complexity and because of that, the mechatronics 
complexity is far more than just a sum of complexities of separate domains. A good example of 
mechatronic systems are robots. Those systems are usually characterized by elaborated mechanical 
construction, variety of electronic sensors, actuators, and controllers and finally, the software that runs 
on the controllers and takes care over all the functionality of the robot and its design into account. 
Developing all the three parts requires specialized engineers, but the system has to be designed first 
and this requires a lot of work in order to make everything fit together perfectly.  
The term “systems engineering” is used to describe the process of developing sophisticated complex 
systems. It focuses not only on technical aspects but also on disciplines like e.g. project management. 
Although mechatronic products are also systems, they are of slightly different type, they are hydride 
systems. Because of the multidisciplinary character of mechatronics, “mechatronics engineering” term 
can be used to describe the process of developing mechatronic systems. Similarly to systems 
engineering, it concerns also aspects related to project management. Using the mechatronics 
engineering approach it is possible to design multifunctional, flexible, reliable, and robust products 
with other benefits like: 
 verified functionality and fewer defects, especially with multifunctional products, 
 better documentation, 
 higher level of reuse between projects, 
 longer life times and with simpler maintenance, and 
 more precise control over cost and schedule and at the same time better fulfillment of user 

requirements. 
Systems engineering is expected to provide similar results [4], but it is important to distinguish 
average single purpose systems from multipurpose and multifunctional mechatronic products which 
integrate submodules and functional peculiarities of the different domains. 

 
The Vmodel is a graphical representation of the system development process. It was first developed 
in 1980s and since then it was adapted by many different industries [4]. In 1997 the model was 
officially adopted by German federal administration. After several modifications the Vmodel was 
suggested by VDI Guideline 2206 as a design methodology for mechatronic systems [1], [2]. It is 
important to note that the Vmodel is not a strict set of rules that have to be obeyed; instead it is an 
approach that not infrequently has to be tailored to specific problem. There are several researchers that 
try to optimize the model for specific mechatronic systems [5], [6], [7], [9], [10]. Additionally several 
researchers are concerned with the teaching of mechatronic design [11], [12] and the development of 
model, tools, and strategies for the product development of mechatronic systems [13], [14], [15].  
igure 1 presents the general structure of the Vmodel proposed for mechatronic systems. The shape 
of the model is the “V” letter and from this the name has been derived. The model shows the main 
flow from requirements through system design, domain specific design, and integration phases up to 
the final product. Vertically the model is divided into levels, which are the successive steps to be 
followed. During system design, first, system requirements are defined and as a result a system 
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specification is generated. These documents are then processed on the second level in order to obtain 
subsystems requirements. In the component level, a domain specific design occurs. The subsystems 
requirements are processed two times: firstly, in order to define components; secondly, to implement 
them in the specific domains (mechanics, electronics, software). In all these design steps verification 
occurs to check whether the design meets the requirements and if not, iterations are performed. After a 
successful implementation, the process of integration occurs. At first, components are integrated 
within the component level so that whole domain specific process is encapsulated in this level. Later, 
the components are integrated into subsystems and finally into a uniform system, which is the final 
product. In each integration phase a validation process occurs and, if some inconsistencies are found, 
the system design can be reprocessed from the appropriate level. 

 

  

 
 
 

  



 

Figure 1. General structure of the mechatronic Vmodel [10] 
 
Modeling and model analysis is the additional element of the Vmodel. It encourages using additional 
modeling and simulation tools in order to investigate the modeled system more precisely. The VDI 
Guideline 2206 recommends, besides the application of the Vmodel, also the use of the general 
problemsolving cycle of systems engineering in its methodology for mechatronic systems.  
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Figure 2. General problemsolving cycle 
 
The Vmodel is present on the macrolevel and concerns the whole system or complete subsystems. 
The general problemsolving cycle is present on the microlevel and is used in individual steps inside 
the macrolevel. The term microlevel is ust an agreed term, the tasks within can last several hours as 
well as several months. The problemsolving cycle methodology was adapted from systems 
engineering [16] and is a guideline for the problem solving process also in mechatronic systems. In the 
general problem solving cycle, several steps are cyclically repeated in order to find an optimal solution 
for the problem (see Figure 2). During those steps the state of the art is analysed and goals are 
formulated (left side). Additionally the current state is checked for compatibility with the desired state 
(right side). Then, during synthesis, analysis, and assessment steps, the improvements are incorporated 
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and the decision is made whether the state of the art is the desired state or not, if not the whole cycle is 
repeated. 

 
In more sophisticated mechatronic systems the model might not necessarily represent the whole 
mechatronic product development process; instead, it can represent particular product lifecycle stages. 
In such situations a set of sequential models can be used. With increasing product maturity the 
additional outer models are carried out and evaluated. The results of the consecutive integration 
steps can be e.g. product requirements, prototypes, and finally the product.  

  









  




 










 

Figure 3. Possible relations between project plan and process maps models 
 
The model is often misinterpreted as a tool that provides a complete methodology and all the project 
management necessary to develop requirements into the market ready product. In fact it does not 
provide even such mechanisms like schedules and milestones. It is possible to establish milestones, but 
it is not the main point of the model and usually pure model related milestones might be to 
general or inadequate. Furthermore, many authors [17], [18], [19] point out that the product 
development is not a sequential process. The development is usually characterized by iterations and 
jumps between certain stages. It is essential to distinguish a tool that is mainly designed to provide a 
design methodology from a tool designed for project management. The model shows the logical 
way from requirements to a market ready product, but, as an analogy, it is only the map that shows the 
checkpoints that had to be followed but not their sequence and timing. Figure 3 presents how the 
model can be related to the schedule. In fact, there are several models and completion of each is 
an achievement of the milestone. This is not the only, but one of the most usual ways, as mechatronics 
products are too sophisticated to put everything into single model and define milestones only within it.  

 
Figure 4 shows the chassis of the production vehicle currently under development called “Industrial 
Robot”. 

 

Figure 4. The chassis of the Industrial Robot 
 
The idea of an Industrial Robot, that is appropriate for heavy transport and disposes of high 
maneuverability, was raised during the evaluation of the innovative steering solution developed at The 
Systems Engineering Laboratory. This steering principle was proven in the first mobile robot called 
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Max 2D. The mechanical design of Max 2D consists of four identical driving units. The design of the 
units allows the use of the same, single motor for propulsion and for steering. It means that there are 
only four motors in the robot and all of them are used for propulsion as well as for steering purposes. 
The central positive characteristic of the robot is that it can follow any 2D direction. The University 
applied for a patent for the solution and the concept was successfully implemented in the mobile robot 
Max 2D. 
Current work focuses on a new design, which is called Industrial Robot, and on using a similar 
steering solution. Like in the previous design, also in the new one it is possible to follow any 2D 
direction. Figure 5 presents the vehicle model as seen from bottom. Four driving modules are present; 
each is equipped with two wheels. These modules align properly to the direction of the movement.  

     

 

Figure 5. Possible moving directions 
 
In Figure 5 the first three depictions presents the vehicle while following any 2D line, the next 
depictions presents a carlike turning (ckermann steering), no slip turning, and finally central point 
rotation. The new mechanical design also consists of identical driving modules. Such an approach 
reduces the development, manufacturing, and maintenance cost (and time) and enhances robustness. 
Furthermore, for special purposes, the number of modules can be increased raising the total power of 
the vehicle and even allowing sophisticated platform shapes as opposed to basic rectangular shape. 

 
Figure 6 presents the main model template that was used for development of the robot. The 
template is compatible with general structure of the model. The domain specification starts at the 
subsystem level. 

 

Figure 6. Used template for the model 
 
The template was first used for the analysis of the requirements given to the system (the robot), which 
first resulted only in a rough concept. Main requirements were related to industrial needs for 
autonomous transportation systems. It was essential to design a unit that was fast and could operate in 
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limited spaces e.g. narrow passages between machines. The project had one specific requirement  it 
had to develop the a priori idea of four wheel steering robot characterized by no dedicated steering 
motors (only propulsion motors). Some simple requirements of the system were put into the 
requirements lists. They were usually countable requirements like e.g. maximum velocity, acceleration 
etc. Both the demanded value and the tolerance were provided in the list. These requirements were 
also assigned to the related domains assuming that one requirement can be of significance to one or 
more domains. Most of the requirements, however, were put into UML use case diagrams. UML 
(Unified Modeling Language) is a modeling tool well known from software engineering, but 
successfully adopted also into other domains. The advantage of the use case diagrams is mainly the 
simplicity of presentation; there is a system or system component and actors that make use of its 
functionality. Most of the requirements could be shown in an abstract manner that is understandable 
even to nonprofessionals. According to the model, the system level should be characterized by high 
level of abstraction in order to allow crossdomain solutions to arise. Using these diagrams helped 
mechanic, electronic and software engineers to fully understand each other and to analyze together 
what exactly is to be done. It is extremely important to have a global view at this point, this allows 
developing real mechatronic products; otherwise more domain specific solutions could arise where 
some domains could be better developed in cost of others or some domains might be limited by others. 
As an example, a well developed but computationally expensive control system could not work 
optimally on a hardware with limited parameters. In order to succeed with the development, at least 
one whole domain has to be redeveloped to comply with the others. There are many more examples of 
links between the domains and keeping the solution abstract and unrestricted by domainspecific 
thinking is a fundament of the early stages of the model. 
After several evaluations of the rough concept of the system, a final process map was prepared. It 
depicted what had to be achieved and how to achieve it. The base of the map was the model of the 
whole system with additional models embedded as subsystems. This way more advanced 
subsystems, the one that were strictly mechatronic i.e. with strong links between all the three domains, 
were distinguished. 
The problem with the application of the model was that it is definitely not a sufficient tool for the 
whole project management. It has to be supported by other tools, e.g. the well known Gantt chart to 
schedule the development process. During the development of the Industrial obot several models 
for different stages of the development were prepared. Some points on the Gantt chart were directly 
related to the completion of some of the models (similarly to Figure 3) and some were even related 
to the completion of stages within the models (e.g. the design or integration of a subsystem or 
component).  
Besides time and resource management, it is also essential to provide documentation in a uniform 
format that can be easily accessed and analyzed by specialists of all domains. CAD models were used 
to design all the mechanical parts and to put electronic devices inside, also the wiring of the system 
was proposed on appropriate diagram. The software was modeled entirely using UML: use case 
diagrams, sequence diagrams, and class diagrams. The class diagrams played also a major role in 
creating the models; the classes represented subsystems and components. The hierarchy of the 
whole system was shown by inheritance; properties were reflected as fields, and abilities as methods. 
The UML, although by many people criticized by being large and complex, is a tool which basics can 
be easily understood and basic diagrams are often sufficient and well understandable. Those additional 
modeling tools played a significant role in the development process: they were easily understood by 
engineers of all the domains, allowed communication on an abstract level, and left the documentation 
of all the steps taken in the project. 

 
The second level of the model is the subsystem level where subsystems are specified and at first 
theirs requirements are considered. This results in designs of all the subsystems. According to the 
template (Figure 6) the domain specification starts in this level. In simple systems the subsystems can 
be directly assigned to specific domains, in our project however, some subsystems are highly 
dispersed into the three main domains and it was reasonable to model them explicitly in new instances 
of the models. There are additional advantages of such a solution. The driving module, for example,  
is one of the main components of the robot and has innovative steering principle which is expected to 
evolve over time and might lead to future innovations. Putting the driving module into a separate 
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model gives better insight into this part of the system and increases the ability to reuse it in different 
projects with minor or major modifications or improvements. 
The design of a single driving module is presented on Figure 7. The CAD model consists of two 
wheels and two motors and thus it is similar to a differential drive. Thanks to the bearing in the upper 
part, the lower part of the module is able to rotate freely while the top of the module is fixed to the 
platform. In order to provide unbounded rotation, a slipring is used to connect the inmodule 
electronics with the rest of the vehicle.  

 

Figure 7. Main mechanical components of the driving module: 1  encoder, 2  brake,   gearbox,   horizontal 
axis, 5  vertical axis, 6  bearing, 7  motor and controller with gear head,   slipring  

 
Besides motors and motor controllers (7), the module consists also of an electromagnetic brake (2) and 
an encoder (1). Both of them work with regard to a vertical axis (5), the former is used to block the 
rotation while the latter measures the angle of rotation. This angle represents also the direction of 
movement of the vehicle. The module acts like a differential drive and in normal operation the angle is 
maintained by torque differences on the wheels. In failsafe mode however, the brake can be used to 
help fixing and holding the angle e.g. when one or both motors fail. 
The solution would be difficult to arise within a single domain as, in fact, it is a composition of all the 
domains. There is no motor responsible only for steering the wheels (like in conventional vehicles), 
instead, thanks to special mechanical construction and appropriate control software, the propulsion 
motor can be used for that purpose. Simply saying, the motor was dispersed into special mechanical 
design, additional software, and additional electronic device  a brake. 
All the electronical components are interconnected by means of a CAN bus making it easy not only to 
configure and replace them, but also to supervise and log the communication process for security and 
reliability purposes. The devices were carefully selected in order to comply with the requirements inter 
alia: available space (encoder put inside the bearing), limited throughput of the slipring (the motor 
units are in the rotational part of the module and integrate motor, encoder, and motor controller in 
a single mechatronic device with a CANopen interface). The process of selecting the devices played 
a major role and required both an abstract view at the beginning to properly state what is required and 
to design it, the domain specific views for selecting particular devices and solutions, and finally the 
integration phases for analyzing compatibility of the choices. The process was additionally 
encapsulated into the general problem solving cycle in order to sequentially improve the outcome what 
resulted in even higher crossdomain integration. 
The driving module by itself is already an elaborate mechatronic product. Starting from the 
requirements of the driving module a crossdomain solution was prepared and was later dispersed into 
subsystems assigned to specific domains, and further into components. Next, according to the 
model, the complete design of all the components was made followed finally by integration on the 
consecutive levels. On each integration level a validation was performed in order to check whether or 
not the requirements of the components, subsystem and finally the system (module) are met. The 
validation is an important step and allows early detection of possible failures. If a component or 
subsystem does not meet the requirements, it is obvious that the same will happen with the system and 
the model has to be reprocessed from appropriate point. Several more subsystems are present like 
the mechanical design of the robot frame, power supply, battery charging, robot control, sensory etc. 
The last subsystem can also be considered using a separate model. It consists of different sensors 
(mechanics and electronics) and system that recognizes environment from the readings (software). The 
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advantage of using a separate model here is reusability. The sensory solution and its documentation 
can be easily copied and pasted into new projects with or even without additional evaluation of the 
model, depending on conformity of the requirements in both projects. 

 
As written in the previous section, the project is described by several models. The models are not 
only embedded into the main model, but are also placed in time similarly to the template presented 
on Figure 3. The first models helped revising the innovative steering concept and designing possible 
paths of improvements. Finally, a model was prepared to design and build the simplified prototype. It 
was more convenient to test the partial design before building the complete robot with four identical 
driving modules (and duplicating the possible problems within single unit). Figure 8 presents both the 
first revision of the driving module model and the testing platform (first prototype) with that module. 

  

Figure 8. The first revision of the module and the testing platform 

 

Figure 9. The control system architecture 
 
The first performed tests revealed several problems, which mainly concerned the driving module. 
Thanks to the early verification of a not yet complete solution, but of just one subsystem, it was 
possible to quickly solve the problems and redesign the rest of the driving modules before 
manufacturing them. Thanks to this procedure a lot of time and money was saved. nly the model 
corresponding to the driving module needed to be evaluated. Thanks to the tests of just one single 
module, it was also possible to find future bottlenecks of the control system architecture. The tests 
revealed that the two motors and the encoder consume a lot of network throughput in order to provide 
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smooth operation. Extrapolating it into four modules, it was found out that in the final product, with 
additional devices interconnected by means of the CAN bus, major communication problems might 
occur. In order to omit this issue several CAN buses were incorporated into the solution as presented 
on Figure 9. The idea was to have separate inmodule buses that interconnect the motors and the 
encoder and that are also connected to global CAN bus. This way some messages are kept within 
particular modules and the bus load is distributed.  

 
The continuous monitoring, reflection, and evaluation of the projects in The Systems Engineering 
Laboratory, even the finished ones, allows both an improvement of the old ones and finding new 
ideas. Thanks to that approach, improvements to the innovative driving and steering solution of the 
mobile robot MAX 2D were possible and resulted in the Industrial Robot project. The driving module 
was one of the main subsystems and as such it was modeled on a separate model embedded into 
main model of the whole system. Such an approach gave the possibility to work more intensively 
on it and to consecutively develop improved versions. The strategy of developing and immediately 
testing was applied in order to foster an early determination of product properties (compare [20], [21]). 
The early testing allowed not only finding current, but also future problems. The special platform, the 
first prototype, was build in order to provide an appropriate test bed for the first version of driving 
unit. The cost was much smaller than the cost of redesigning all the modules and the prototype of final 
chassis. In the sense of systems engineering, the realization of the first module can be understood as a 
preliminary study (compare [7]). 
The first prototype chassis with a single module behaves slightly different than with two modules and 
the chassis was sized to accommodate up to two modules. Recently, the second, improved version of 
the module was build and will be tested until the redesign and reconstruction of the first version. After 
this, the platform will be slightly redesigned in order to accommodate two modules, this time mostly 
the global model will need to be reevaluated while the sensory system might be left untouched and 
driving unit might require only minor modifications. After the successful testing and possible 
redesigns, the next modules and eventually the final chassis will be designed and produced according 
to the project schedule. 

 
The second design currently under development in The Systems Engineering Laboratory is an outdoor 
robot called MAX 3D. The mobile robot is developed to be able to drive on rough terrains and over 
relatively big obstacles. The mechanical design again consists of four identical driving modules. Such 
an approach proves to have many advantages: the single unit can be analyzed more deeply, is easier to 
develop and manufacture, and finally maintenance is easier (e.g. replacing the damaged component). 
The requirements for the robot were similar to those of the Industrial Robot and a similar template of 
the model was used. The additional requirement for the robot was to drive on rough terrain or over 
obstacles while keeping the demanded platform inclination. Most of the subsystems were transferred 
from the Industrial Robot only with some minor customizations. The driving unit and whole control 
system, however, had to be fully redesigned in order to advance into 3D space. Moreover, during the 
evaluation of the early model of whole system (preliminary studies) a possibility of compensating 
external forces by inclination of the robot chassis was observed. The hardware can be enriched by 
accelerometer and software can be added to detect and compensate centrifugal forces or 
acceleration/deceleration by an appropriate inclination of the robot chassis. The software system will 
require a dynamic model in order to be aware of all the important forces acting in the system. 

 
The design, since distinguished by an additional degree of freedom (3D space), requires a more 
advanced control system. The fact that the steering, velocity, and level control is supported only by 
one motor, and brakes, and encoders, directly increases the complexity of the control system.  
Building such a system is a difficult task and also requires an appropriate approach for development. 
Here, as it is an example of the domain specific design, software engineering comes with a helping 
hand. One of the basic rules of the software engineering is the modular structure whether it is 
structural or object oriented programming. According to this rule the software system was divided into 
the two main levels (Figure 10): the low level control responsible for steering, velocity and level 
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control, and the high level control responsible for navigation, path planning, and path optimization. 
Going further, the levels are divided into layers which are the modules strictly responsible for the 
given functionality; Figure 10 presents also the layers of the lower control level.  

 

Figure 10. Architecture of the control system (source: [8]) 

It is important to note that the higher level works in abstraction from the motors, the brakes, etc. Such 
abstraction allows reusing the higher level in different projects providing that the feasible maneuvers 
and interface of the low level control are compatible, otherwise some modifications might be 
necessary. 

 
The mobile robot MAX 3D was developed in two versions. Figure 11 a) presents the first one and 
Figure 11 b) the second one. The latter was a result of solving a problem with turning when the robot 
was heavily inclined. The problem arises because, in order to steer the robot, the wheel has to travel 
longer distances in such situations. 

  

Figure 11. a) Chassis, b) alternative chassis, c) driving module of the mobile robot MAX 3D 
 
The general problem solving cycle had to be carried out here rather on the macro level as a major 
modification not only of the module but of the whole system concept was necessary. After reverting 
and reevaluating one of the earliest models of the system a decision was made to bend the wheel
ended legs and bring the motor down loosing however the ability to rise the leg in the air in front of 
the obstacle. During evaluation it was shown that the system requirements were badly analyzed and 
such an ability of the robot is not crucial. It is more important to steer the robot smoothly and only to 
run over the obstacles. Raising the leg is optional and rather unstable operation since the robot has to 
stay only on three wheelended legs. 
Figure 11 c) presents a detailed design of the alternative version of the driving module. Also here, the 
devices had to be chosen carefully for the provided rigorous restrictions  weight, cabling capabilities, 
power, dimensions, etc. The devices are of the same type as in the Industrial Robot, here an additional 
brake and encoder are present due to the additional degree of freedom. In the vertical axis (1) a brake 
and an encoder are provided. On the horizontal axis (5) an encoder (2), a brake (3), and springs (4) are 
present. The motor (with embedded controller) (7) is mounted directly at the lower part of bended leg 
(6) and the propulsion is transferred to the wheel (8) by means of angular gearbox (9). The platform 
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level can be changed by virtually stretching the vehicle by means of an appropriate velocity control. 
The springs help to control the level and provide some level limitations; they are also helpful in 
decreasing trembling between suspension and the platform of the robot. The brakes are used to help 
controlling and then holding the level or inclination. 

 
Thanks to the well suited and documented project management of the Industrial Robot project, during 
the development of MAX 3D it was possible to easily make use of the same templates and tools. 
Moreover, a number of subsystems and components together with their documentations were easily 
transferred and adopted to the new project. Even some elaborate subsystems needed only small 
adaptations e.g. the sensory subsystem: its separate model was started by adding requirements 
regarding reading the robot inclination, what resulted in adding an inclination sensor, some wires and 
appropriate fragments of software. The reusability of subsystems and components dramatically 
reduced time and resources necessary for the project. Without modular and transparent design, the 
adaptation process would prolong, and sometimes might come to an extent that is no longer profitable.  
This design is also an example of wrongly interpreted requirements what unfortunately happens in 
many projects. The requirements should be processed carefully on each step of the design during the 
design phase and the parts of the system should be validated and compared to the requirements during 
the integration phase. 

 
The development of mechatronic products is a highly elaborate process. Mechatronic products are 
complex systems that widely expand to mechanical engineering, electronical engineering, and 
software engineering. The complexity of such systems is far more than just a sum of complexities of 
the main domains. It is essential to keep in mind that the domains have to be smoothly composed as 
otherwise the product might not fulfill the set requirements and might not meet user expectations. It is 
also important that the user expectations continuously rise, they want better, more advanced products 
and at the same time more inexpensive. In order to fulfill the requirements and reduce development 
costs, a good and verified methodology is essential. ollowing DI uideline 2206, the model is 
the preferred process map, but additional tools are essential in order to manage the project and develop 
the requirements into market ready product in an effective and efficient manner. 
In the second part of the article the two designs were presented. They both originate from exploration 
of a mobile robot called MAX 2D which was developed in The Systems Engineering Laboratory. In 
these projects the innovative and patented driving and steering solution was redesigned in two ways. 
In the first project, called Industrial Robot, the power and reliability was increased, while in the 
second one, a mobile robot called Max 3D, an additional degree of freedom was gained allowing 
chassis level regulation. Both projects share several subsystems and use the same methods and 
templates for project management. A lot of time and resources was saved this way and it would not be 
possible without transparent design, hierarchical system structures, and clear documentation at each 
step. The model played a major role but during the design and realization of the mobile robots it 
was also learnt that: 
The use of a model as a logical structure has to be accompanied by additional tools for project 

schedule management.  
A single model, even evaluated repeatedly, is often not enough for complex mechatronic 

systems; several models might be necessary in order to develop from the requirements into 
market ready product allowing prototypes to be easily derived all the way. The prototyping is not 
only important for elaborate systems, but also for developing innovative, not yet well known 
solutions. 

ierarchical structuring of the models allows better insight into the system and through better 
decomposition provides also better reusability of the subsystems and the components. 

The general problem solving cycle, although proposed and mostly used at the microlevel, can be 
also beneficial at the semimacro or even the macrolevel. By continuous monitoring and 
improvement it can help finding optimal solutions even of elaborate problem, or help solving a 
problem that lies in the grounds of the project and requires major changes in the approach (like in 
section 4.2). 
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The early testing of even partial solutions often helps determining final product properties and 
prevents possible future failures. 

Future research focuses on the further development of the Industrial Robot and MAX 3D. The MAX 
2D project, although it might be assumed finished, is in continuous evaluation as might result in some 
improvements or clues that might help improving others or starting new projects, besides it serves as a 
test platform for various sensors and higher level software such as environment recognition.  
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