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Abstract 
This paper explores the role that social evaluation has in the definition of design as a source 
of innovation. The question of interest is how differences between the evaluative processes of 
group members can potentially determine the success or the failure of novel ideas in design. 
Computational simulations are presented of a simple design task in a social system where the 
effects of different types of group evaluation are analysed in relation to the diffusion of ideas, 
their differentiation, and the quality ascribed to them by evaluator groups. These results serve 
to formulate a series of qualitative hypotheses about group evaluation in design as well as 
practical guidelines for group brainstorming. The current contribution of these in silico 
studies is to assist in reasoning about innovation and design in a way that conventional 
research does not support. 
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1. Designers and societies 
Design has been identified as a key source of innovation [1]. Novel ideas that present 
advantages over existing solutions can be introduced by designers and can be subsequently 
materialised by manufacturers, and ultimately evaluated by societies. This can be described 
as a generative-evaluative process in which initially the designer generates an idea that is 
evaluated by the immediate group such as the design team or department. If accepted, novel 
ideas continue through a series of evaluative stages until their materialisation and the ultimate 
decision-making process of adopters who embrace or reject novel designs. When new ideas 
trigger group changes, designers can be characterised as initiators of change.  

The role of designers in triggering innovation is a difficult subject of inquiry. It is hard to 
experiment with novel ideas since it is challenging to generate them in the first place and in 
addition they can only be evaluated by those with no previous exposure, making replication 
difficult. Traditional research in this area is also constrained by the pro-innovation bias [2]: 
the implication that innovations in general should be adopted by a majority. Due to this bias, 
empirical research has focused more on rapidly diffusing innovations, more on adoption that 
on rejection, and more on continued use than on discontinuance. Computational social 
simulation is an appropriate method of study here because cases can be repeatedly 
experimented with in order to reveal the key factors for the triggering of social changes. 

In the multi-level evaluative processes of novel ideas in design there is a large number of 
possible factors that may determine their success or failure. One such factor which has been 
overlooked to some extent is how different types of group evaluation may affect the role of 
designers as change agents of their societies. This paper presents a series of computational 
simulations of a simple design task in a social system that help to understand how differences 
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between the evaluative processes of group members can potentially determine the success or 
failure of novel ideas in design. 

1.1. Types of group evaluation 
Studies of social aspects of creativity have previously identified the importance of evaluation 
of novel ideas by groups. Consensual agreement has been identified as one of the best 
available ways to distinguish creative solutions from their non-creative counterparts [3]. In 
some cases the evaluation criteria are made explicit to or by evaluators, whilst in other cases 
an operational notion of creativity as a combination of originality and utility are given 
without well-defined evaluation criteria. What has remained largely outside these types of 
studies has been the likely effects that different types of group evaluation may have in 
determining what ideas are ultimately considered creative. For instance, an aspect of interest 
is how diversity of evaluation criteria amongst members of evaluating groups could affect the 
influence of an individual to trigger a group change. 

Different aspects of group interaction may be of interest in consensual evaluation. Relevant 
patterns of social influence include the propagation of errors; hidden profiles; cascade effects; 
conformity; and group polarisation [4]. These type of phenomena suggest that well-
established solutions in design could be explained at least to some degree by group dynamics 
rather than by their intrinsic characteristics alone. Due to these types of factors, it is feasible 
to hypothesise that varying levels of individual differences across evaluators may help 
determine the acceptance or rejection of novel ideas.  

An experimental range can be defined between two extreme types of situations of collective 
evaluation. On the one hand evaluation of novel ideas may take place in groups where 
evaluators are required to follow well-defined and widely shared criteria. In these cases the 
role of evaluators is to conduct an explicit and objective assessment and perhaps even include 
a well-established ranking of priorities collectively defined. On the other hand, members of 
evaluative groups may be free to apply their individual judgement to a higher degree. A 
variety of personal values and priorities may have more weight in these situations. This may 
be the case of more subjective group conditions where limited quantitative measurement is 
possible and individual idiosyncrasies have a greater impact on evaluation.  

Given the range of possible situations between these two extremes, it would be interesting to 
reveal some fundamental patterns between types of group evaluation and the resulting 
innovation cycles. In this way we could start to understand what type of design behaviour is 
required to trigger innovation cycles across fields or disciplines that have different types of 
evaluation. Likewise, it would be useful to learn how often and under what group conditions 
innovation cycles are likely to take place given a type of group evaluation. At present, very 
little is known or has even been asked in these terms. Traditional research tends to place all 
agency upon the individual designer irrespective of these types of field factors [5].  

1.2. Evaluation in teams and in society 
The study of patterns of evaluative behaviour could apply in similar ways to small groups, 
committees, and teams (such as those that evaluate design competitions or a firm’s design 
strategies) as well as to a broader notion of social evaluation, i.e. the market. In the former, 
team members may play the roles of generators and evaluators at different times for example 
during brainstorming sessions. In the latter, a range of stakeholders can be identified 
including opinion leaders, regulators, and consumers. What is common in both cases is the 
link between individual generation (the designer, the firm) and group evaluation (the team, 
the market). For the purpose of this paper what matters is that groups can be composed by 
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evaluators that may have different criteria, leading them to varying degrees of agreement and 
therefore, different types of group judgements.  

This paper presents computational simulations of social processes in a simplistic design task 
that captures some of the aspects of the evaluation and diffusion of novel ideas. An artificial 
society of agents is defined to conduct experimentation with the aim of better understanding 
the role of design in innovation. The model studied in this paper includes simple designer 
agents competing for the adoption decisions of an evaluating group. It also includes a notion 
of product repository or domain where groups collect selected products that receive high 
scores. This tripartite model is based on the DIFI model of creativity, i.e., Domain-
Individual-Field Interaction [6].  

2. Artificial teams and artificial societies 
Computational studies of innovation and creativity have focused on three main goals to date: 
a) to model the processes and products attributed to creative behaviour in humans [7]; b) to 
develop systems to support individual and team creativity of computer users [8]; and c) to 
experiment with types of system behaviours that have been associated to creativity and 
innovation. Computational explorations of the third type consist of designing the components 
of a target system and their interactions, and observing response patterns to controlled 
changes. From these explorations the modeller extracts generalisations of qualitative structure 
about a system which can then be investigated in relation to real situations.  

One way to pursue the modelling of creativity and innovation with the aid of computers is to 
build exploratory computational models that contribute to our understanding by analogy. 
Computational social simulation is a tool to build hypotheses and discern patterns of 
behaviour in the social sciences. Simulation of multi-agent systems (MAS) supports a type of 
in silico experimentation where social behaviour is implemented computationally with the 
aim of discovering the interaction of local mechanisms and the resulting collective structures 
of interest [9].  

Computational simulation of artificial societies using MAS is appropriate for this type of 
study because the target system (i.e., innovation) is complex, there are important non-
linearities between variables, and there is interest in the dynamics of the system over time  
rather than in its components in isolation [10]. In recent years the need to model micro-macro 
causality in more detail and to account for circular and lateral emergence in MAS has been 
stressed [11]. In this paper we formulate a MAS which accounts for explicit group structures 
assumed to feed back into individual behaviour in circular or second-order emergence [12].  

2.1. DIFI framework 
A MAS to investigate design and innovation is proposed based on the DIFI framework 
(Domain-Individual-Field Interaction) [6, 13]. This framework focuses on the interaction of 
three system components: domain, field and individual. The individual is represented here by 
design agents which solve simple design tasks. The domain consists of the set of shared 
knowledge and selected artefacts shared by members of a group. The field includes groups of 
individuals who share a common domain. These may be consumers, critics, and other 
designers. The key implication of the DIFI model is that creativity is a system property and 
not something that takes place within the head of the designer. Situated in a dynamic 
environment and in balance between external and personal factors, creative individuals are 
said to generate “the right product at the right place and at the right time” where rightness is 
largely defined by the society.  
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Figure 1 depicts the DIFI model where creativity occurs in the relationship between the 
components of a system [6]. It describes the individual receiving information from the 
domain and adapting to the constantly changing conditions of a particular field, who 
evaluates novel ideas and decides to reject or incorporate them into their domain. In general 
terms, the domain is assumed to transmit information to the person, the person to produce a 
variation, and the field to include the selected variation to the domain [14]. 

 
Figure 1 View of creativity as a property of a system of individuals, fields and domains . 

This view holds that the only available way to evaluate the creativeness of a generative 
process produced by a person is social validation. However, the DIFI framework may resolve 
the issue of where to locate creativity, but it still fails to offer any details of what types of 
processes and how interaction takes place between person, field and domain.  

The casual chain in the DIFI map is not likely to be a linear progression from individual 
variation to social selection to cultural retention and transmission. In a general-systems view 
the focus is on the linkages of system components where strong complementarities can be 
expected. Any real understanding of creativity and innovation in design is thus likely to 
emerge from the investigation of the dynamic interaction of all three levels: the 
psychological, the social, and the epistemological.  

2.2. The system 
The system integrates an architecture of social agency with a simple design task based on two 
dimensional shapes and geometric operations: a simple way to visualise interactions in the 
system. Here competing designers continuously generate artefacts and evaluator groups 
evaluate them. Artefact evaluation is based on a multi-objective adoption function that 
maximises geometric features and novelty, i.e., adopted artefacts tend to be more different 
from that of the competition.  

Stake-holders represented in the system include a number of competing designers, a field or 
group of evaluators that includes potential adopters and opinion leaders, and a domain or 
repository of solutions selected by influential field members. Further details about the system 
that are not central for the scope of this paper can be found elsewhere [5]. The main variables 
of interest here are defined in Table 1. 

Table 1. Main variables of the system 

Variable Description 
ωε Perceived artefact feature 
υε Perception threshold 

Individual 
person or firm 

Field 
team or society 

Domain 
culture 

Creativity 
variation transmission 

selection 
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E Artefact feature representation 
ΩE Artefact line graph representation 

ψ(ωε0, ωε1, ωε…) Evaluation function of artefacts 
ρ(ψ) Evaluation preference or bias 
αA Adoption decision 
υs Adopters’ satisfaction 

SDI Strategic Differentiation Index 
µComp, µDiff Design strategies (competition and differentiation) 

T, ET Domain and domain entry 
TΨ Domain score 

2.2.1 Artefacts 

In this system, design artefacts are the product of design behaviour and are the subject of 
evaluation by adopters. Artefacts are kept simple enough to support reasoning for adoption 
decisions. They are implemented as two-dimensional line representations constrained by 12 
boundary points as shown in Figure 2(a). This is a simple way of visually representing 
features of design artefacts with nomological constraints [15]. This simple design task is a 
type of layout problem with negotiable constraints, delayed feedback, cumulative solutions, 
and with a range of acceptable solutions that depend on different viewpoints. Multiple 
representations and ambiguity are possible because these types of artefacts are perceived and 
interpreted by evaluators according to a set of randomly distributed perception biases. Figure 
2(b) shows sample perceived features of an artefact. The assumption is that people perceive 
and base their evaluations on different features of design products.  

 
(a)                                                         (b) 

Figure 2 (a) A simple two-dimensional representation, ΩE, and (b) possible interpretations of 
an artefact E built as Hamiltonian closed shapes by adopters with individual perception 
biases. 
A perceived artefact in this system is defined as a set E of perceived features ωε represented 
by closed shapes built as Hamilton cycles [16] from a linear representation ΩE in a two-
dimensional space. A perception threshold υε is individually assigned to adopters from a 
Gaussian distribution with mean and standard deviation as independent variables. With a 
tolerance of ±1, υε indicates the number of boundary points that a perceived feature ωε can 
include. Therefore, with υε = n adopters perceive a set {ωε0, ωε1, ωε…} that includes n-1 to 
n+1 boundary points. Given such set of perceived features, an artefact E is defined by: 

{ }...,,, εεε
ε ωωω








Ω
±υ

= 10
E

1
E  . 

(1) 
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where an artefact E is perceived as a set of features ωε (closed shapes here) given a branch 
limit of a Hamilton cycle, or perception threshold υε over a line graph ΩE. Since artefact 
features ωε are represented here by polygons, it is possible to evaluate artefact geometry 
ψ(ωε0, ωε1, ωε…). Geometric relations ψ… are evaluated between perceived artefact features 
and are expressed as ψi(ωε0, ωε1, ωε…).  

Figure 3 shows five artefacts with features that exhibit (a) uniform scale, (b) vertical 
alignment, (c) rotation and intersection, (d) flip, and (e) uniform scale and rotate. Geometric 
relations are built based on the perception of the corresponding features, i.e., the scale 
property of Figure 3(a) is only built if both triangles in Figure 3(f) are perceived. In such case 
the relation is written as ψscale(ωt1, ωt2). 

 
(a)                 (b)                 (c)                 (d)                 (e)                 (f) 

Figure 3 Type of geometric properties of perceived artefact features 
The evaluation of an artefact Ψ(E) is given by the set of geometric relationships between the 
perceived features ωε used for evaluation. 

( ) ( ) ( ) ( ){ }...10......101...100 ,,,,,,,,E εεεεεεεεε ωωωψωωωψωωωψ=Ψ  . (2) 

An artefact is, in effect, a compromise between conflicting evaluation criteria. Namely, a 
single artefact cannot contain all geometric characteristics (i.e., some aspects of scale and 
alignment are mutually exclusive). The design task therefore consists in adapting artefacts to 
evaluators’ criteria. At initial time, artefacts are configured and assigned to each designer. 
Typically, artefacts are all set to a common configuration from which designers and 
evaluators start their tasks.  

2.2.2 Field 

The field here is composed primarily by evaluators or potential adopters. The decisions of 
evaluators are determined by individual preferences and by group influence. In modelling 
different design fields more specific assumptions can be incorporated into the evaluation 
functions. For explanatory purposes, in this system potential adopters evaluate artefacts based 
on six geometric criteria, which include horizontal and vertical alignment, intersection, 
rotation, similar bounds, and number of sides. 

Individual preferences of evaluators are implemented in the form of biases for every 
geometric criterion. These biases are assigned at initial time from a random Gaussian 
distribution with control mean and standard deviation. This individual bias is a source of 
evaluation disagreements. This is a way to implement the assumption that even if all adopters 
can agree on performance measures, feature priority is individualised. For instance, we all 
may agree that a sports car is fast, but speed is an important adoption factor to select a vehicle 
only for some.  

Evaluators assign a preference bias to every geometric criterion such as alignment, rotation, 
etc. A preference ρ(ψ) is implemented as an evaluation bias between 0.0 and 1.0 for each 
geometric relation of a perceived artefact. An individual preference ρ(ψ) is implemented as a 
weight to the evaluation ψ of and artefact. 

ωt1 

ωt2 
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( )ii ψρ∆+ψ  . (3) 

 where individual preference ρ(ψ) biases the evaluation of a geometric relation ψ by adding a 
weight assigned at initial time as a random value from a distribution with independent mean 
and standard deviation.  

The evaluation function is translated into the adoption decision as a function of the perceived 
novelty of the artefact. Perceived novelty is given by the difference per criterion between 
perceived artefacts. This mechanism promotes the adoption of artefacts with the most 
distinctive attributes. Given that geometric functions are mutually exclusive, perceived 
artefacts are expected to receive a high evaluation in some geometric functions and low in 
others. As shown above, evaluators compare artefacts on every geometric criterion. Once 
each evaluator adds its own individual preference or bias, the artefact with the criterion with 
the highest difference from the mean performance in that criterion is chosen. This choice is 
called the adoption decision, αA. 

( )iA max ψ=α  . (4) 

 where the adoption decision αA is based on the most distinctive geometric criterion between 
artefacts.  

Therefore, an artefact with a high index ψ in a criterion where all other artefacts have a low 
evaluation is more likely to be adopted than an artefact with perhaps a higher mean 
evaluation Ψ if other artefacts also rank high on the same criteria. Since evaluations are based 
on different perceived features and different individual biases are applied, the population 
need not converge to the adoption of a single artefact. Likewise, when adoption decisions 
converge, they need not be based on the same criteria.  

Individual preferences of evaluators are dynamic. One way in which evaluation preferences 
change is by a mechanism of habituation. Evaluators update their preferences ρ(ψi) at every 
adoption decision by marginally increasing their preference for the criterion with the highest 
score if other artefacts do not perform well in that criterion. This mechanism generates a 
gradual trend by which adopters increase their preferences for good artefacts as long as these 
maintain a degree of novelty.  

In this framework adopter satisfaction υs is used as a simple post-adoption measure of quality. 
υs is a discrete value given by the comparison of adoption decision αA and individual 
preference ρ(ψ). It is represented as { }1,0,1−=sυ . These values correspond to three levels of 
satisfaction: not satisfied, satisfied, and very satisfied, respectively.  

Satisfaction here does not determine adoption, it is a measure of how satisfied is an adopter 
after it formulates its adoption decision αA, based on perceived performance, individual 
biases, and novelty. An adopter may choose an artefact that performs very well in unique 
criteria and still be dissatisfied.  

( ) ( )( )
( ) ( )( )

















−=υ⇒

=υ⇒Ψ>ψρ

=υ⇒Ψ=ψρ

1otherwise
0Emean

1Emax

s

s

s

  . 

(5) 

If the geometric criterion with highest preference ρ(ψ) receives the highest evaluation score 
Ψ(E), then adopter satisfaction υs = 1, i.e., the artefact’s features match the preferred 
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criterion. If ρ(ψ) is not the highest of Ψ(E) but is above the mean, υs = 0, or the adopter is just 
satisfied. Lastly, if ρ(ψ) is below the mean evaluation component, υs = -1, or the adopter is 
not satisfied.  

An adopter may be unsatisfied even when the artefact performs well if the artefact is 
differentiated from others in criteria other than the adopter’s highest preference. If the artefact 
does not perform well or is not different from other competing artefacts, then the adopter 
abstains to adopt and its satisfaction level υs = -1 by default.  

Social interaction complements the evaluation process and consists of contact with 
neighbouring evaluators in the field. The aim of this interaction is to influence the adoption 
decisions of one’s neighbours. Evaluators in the field are assigned random positions in 
different social networks where they are represented by nodes and their adjacency by links or 
social ties.  

The various mechanisms of social influence are given elsewhere [5]. Influential adopters gain 
the role of opinion leaders in this system. These agents are representative of their groups 
inasmuch as they have spread components of their adoption decisions. Since there are various 
social spaces, there are different opinion leaders on every space. This means that there are 
expert adopters on different topics: some are influential on perceived features, others on 
preferences, others on adoption choices. Opinion leaders are adopters who concentrate an 
influence that is one and a half standard deviations above the groups’ average. 

2.2.3 Designers 

A simple design task is assigned to a group of designer agents. The size of this group is 
determined as a ratio of field size at initial time. During a task, designer agents may develop 
knowledge in the form of if-then rules where the condition is an artefact change and the 
action is the feedback provided by artefact adoption in the field. As a result of this task 
designers generate new artefacts which are presented to adopter groups in the field for 
evaluation. Designers can also evaluate the work of their peers and learn new knowledge 
from artefacts that receive positive feedback from the field. As designers evaluate each other 
they modify their peer-recognition levels.  

At initial time all design variables are set to zero. The outcomes of the design task are partly 
determined by the decisions made by adopter group and partly by the ability of competing 
designers to generate novel solutions. The goal of designers here is to generate artefacts that 
are chosen by adopters, selected by critics, and imitated by their peers.  

Designers may engage in different types of behaviour depending on a number of internal and 
external factors. Contingent design strategies are defined in this system as the product of the 
confluence of these conditions. As determined by their strategies, design behaviour may seek 
to increment adopters’ satisfaction levels, to extend the adopter base by capitalising on 
relative superiority (competition), and/or to maximise differences to other artefacts 
(differentiation).  

Designer agents seek a type of contingent strategy where they learn a design rule, i.e. an 
instance of domain knowledge tied to the artefact representation. Rules are generated based 
on the designer’s model of the population's adoption process construed by retrieving 
preferences and choices of opinion leaders. This is a way to implement positive feedback 
since otherwise a designer would not have access to target criteria and target perception, i.e. 
an opinion leader may be an adopter of a competing artefact or may be abstaining from 
adopting. A designer can emulate the collective decision process by generating hypotheses of 
possible alternative artefacts.  
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Designer agents evaluate their artefacts to decide what features to change in order to increase 
adoption. This decision determines the strategy to follow. We assume that designers are able 
to sample their adopter groups. Firstly, designer agents use the mean perception threshold υε 
of their adopters to model the set of perceived features ωε of their artefacts. Secondly, 
designer agents use the most frequent adoption preference of their adopter group as a target 
preference. If the artefact of a designer has no adopters, then random perception threshold 
and criteria preference are set. 

Based on the mean perception threshold υε, designer agents simulate the perception and the 
evaluation of adopters to obtain the estimated artefact performance Ψ(E). The result is an 
approximate perceived performance of the artefact by criterion ψi(ωε0, ωε1, ωε …). This is rated 
against the highest adoption preference ρ'(ψ) of the adopter group. Two types of strategies are 
defined based on this rating: competition and differentiation [17]. In this way the designer 
agent modifies an artefact based on an estimate of its performance against the preferences of 
its adopter group.  

( ) ( )( ) ( ) ( ) ( ) ( ){ }...10 ,,;mode ψρψρψρ=ΨΡΨΡ=ψρ′  . (6) 

where the set of adopter group preferences Ρ(Ψ) is a set of the individual preferences of 
adopters. ρ'(ψ) is the statistical mode, i.e. the most frequent preference of the group.  

A competition strategy is defined by a designer agent when the performance of the main 
evaluation preference is above the mean of all geometric criteria. In competition, designer 
agents aim to improve the features that provide good performance on the preferred geometric 
criterion. For instance, if the main preference of adopters is rotation, designers aim to modify 
their artefacts to increase rotation relationships. Competition indicates that the designer is 
likely to increase adoption by gradually increasing the performance of the preferred criterion, 
i.e., it has a chance to improve.  

( ) ( )( ) CompEmean µ⇒Ψ>ψρ′  .  (7) 

A differentiation strategy is chosen when artefact features perform below average on the 
evaluators’ highest preferences. In differentiation, designers aim to improve features that 
perform best on different geometric relationships. This is because an implicit criterion of 
novelty controls the evaluation function, so potential adopters may prefer an artefact that 
performs well in a different criterion. For instance, if the main evaluation preference is 
rotation and an artefact performs poorly on rotation but performs very well in alignment, the 
designer may choose to improve alignment. Differentiation indicates that a designer is not 
likely to improve an artefact’s performance on the preferred criterion but is likely to improve 
performance on other criteria.  

( ) ( )( ) DiffEmean µ⇒Ψ<ψρ′  .  (8) 

At initial time, when all artefacts are set with the same configuration, all designers engage in 
differentiation strategies until they start finding out what features perform well in the field. 
Then, designers start to modify their strategies. The field does not converge into adopting one 
solution: when artefacts get too similar, designers seek to improve other features. Strategies 
therefore indicate what features of their artefacts designers change (and why). The actual 
change is based on a type of learning process in which designers generate and apply rules.  
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Designer agents here are not equipped with creative abilities per se. The aim is not to 
introduce special traits to assess the effects of agents’ creativeness as defined by the 
experimenter. Instead, all designers are given equivalent sets of mechanisms. No 
extraordinary process within the individual is hardwired but in time agent interaction renders 
a social self-organised construct of how a designer may exhibit behaviour considered as 
creative within its society. 

A measure of difference between artefacts is implemented in this system as the Strategic 
Differentiation Index (SDI): an index estimated collectively by evaluators that reflects the 
perceived differentiation across available artefacts. With artefacts initialised in a converged 
state, SDI = 0.0. As designers seek to generate artefacts that differ from each other, SDI 
becomes greater than  0. 

These system mechanisms encapsulate in a simple way some of the characteristics of design 
problems including ill-structuredness and interpretation; incremental solutions; hypothesis 
generation; nomological constraints; no right or wrong answers; and delayed feedback [15]. 

2.2.4 Domain 

The last component of the system is the repository or domain. A domain is defined as the 
collection of design artefacts of a field. Entries to the repository are selected by opinion 
leaders which emerge from the organisation of adopter groups. A domain characterises the 
field at a point in time: it can contain a varying quantity and quality of entries as a result of 
the interaction between designers and evaluators.  

The mechanism by which opinion leaders add new artefacts to the domain can be described 
as a selection of ‘better or different’ entries. A threshold of entry is set (initialised to zero), 
which is raised by selected entries. If future artefacts are selected for the same geometric 
relationships, then they have to receive a higher score. Otherwise, new artefacts can be 
selected as entries if they receive high values on other geometric relationships.  

A domain is defined as a collection of artefacts selected by opinion leaders. At initial time the 
domain is empty.  

{ }...T1T0T E,E,ET =  . (9) 

Opinion leaders select entries ET when their evaluations Ψ(D) of an artefact produce a 
domain score above an entry threshold ΨT. The entry threshold of a repository is initialised at 
TΨ = 0. With every entry, ΨT is increased to match the value Ψ(D) of the last entry.  

A decay mechanism of the entry threshold is implemented so that when no entries are 
selected by opinion leaders, the entry bar is gradually lowered. The ratio of decay is another 
parameter  for experimentation. In different fields, the rules of selection are assumed to vary. 

( ) TTE Ψ∆⇒∅= −

 
(10) 

With these mechanisms in place, the system can be run over a predetermined number of 
iterations or until certain conditions are met.  The type of design task, the number of agents 
and other social and domain experimental factors can all be varied. In this paper all 
conditions are kept constant except for the value of evaluation or adoption biases (w) that 
adopters apply in their decision-making process. 
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3. Conformity and dissent in group evaluation  
The objective of this experiment is to explore how group evaluation and design may vary 
when potential adopters have different levels of individual biases in a shared set of evaluation 
functions. At one extreme, individual evaluation preferences are assumed to play a strong 
part in the adoption decisions. At the other, individual preferences are weaker so the 
decisions of the group become more uniform. In the former case adoption is more 
‘dissocialised’ whilst in the latter social influence is stronger.  

Evaluation bias (w) is defined in this paper as the strength of evaluation preferences ρ(ψ) 
among members of a group. The range of experimental values is (0 ≤ w ≤ 1) so that w ≈ 0 
indicates that individual preferences play a marginal role in evaluation, whilst w ≈ 1 causes 
individual evaluation preferences to significantly affect the evaluation process and thus the 
adoption decisions in a group. 

The evaluation bias (w) is analogous to varying the degree of subjectivity across evaluation 
groups. With certain types of design products evaluation can be expected to be more 
objective leaving only marginal room for individual biases. This is the case when products 
are likely to be evaluated by measurable functions such as speed or performance. In such 
cases the evaluation bias is defined in our experiments as w ≈ 0. In contrast, other types of 
products leave more room for interpretation and subjective independent judgements. In such 
cases the evaluation bias in our experiments is given by w ≈ 1.  

3.1. Experimental setup 
With all other field, domain, and design variables in the system kept constant, the 
experimental variable w is manipulated across 30 cases. Monte Carlo simulations are 
conducted to explore the range w = 0 to w = 1 in ten increments. Experimental pseudo-
random generator seeds are used to replicate each case. The objective is to assess whether 
consistent patterns of change are observed in the outcome of the system’s components by 
changing this variable alone.  

The behaviour of each designer is analysed through a simulation by recording the number and 
types of strategies developed, the number of design rules or knowledge that they generate and 
use to modify their artefacts, and the amount of peer-recognition exchanged between 
competing designers.  

The behaviour of the field is captured by the total adoption of its members, the distribution of 
these adoption choices (who adopts what artefact), and by the history of satisfaction levels in 
the field. Lastly, dependent variables of interest in the domain include the number of artefacts 
selected as domain entries and the scores assigned to them by opinion leaders. 

Results for this experiment are obtained by comparing the mean values of thirty cases for 
every increment of evaluation bias w. Simulations presented in this paper are run for a period 
of 2,500 iterations with three designer agents and a field size of one hundred individuals. 

3.2. Results 
This experiment shows a variety of effects that differences in the evaluators of solutions can 
have in systems of this type. The main effects are observed in cumulative adoption and 
adoption distribution; adoption satisfaction; perceived differentiation; and scores assigned to 
domain entries. Results show that increasing the strength of individual biases has a number of 
effects. As the evaluation bias is manipulated, evaluators vary their selectivity of adoption 
choices and vary their frequencies of adoption. They also change their levels of satisfaction 
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as the evaluation bias is changed. The way designer agents choose their strategies is also 
consistently affected, resulting in artefacts that receive different levels of differentiation by 
evaluators. Finally, the selection of domain entries by opinion leaders varies as a result of 
manipulating the evaluation bias, in particular the scores assigned to these entries. In the 
following section results are presented for the two extreme cases where w = 0 and w = 1 for 
clarity. 

4.  Effects of group evaluation 

4.1. Adoption and abstention 
The first result of varying evaluation biases across groups is related to adoption satisfaction 
and to total or cumulative adoption. Figure 4 shows the effects of the evaluation bias w = 0 
and  w = 1 against adoption satisfaction levels and aggregate adoption. The first result in 
Figure 4(a) is rather straightforward: adoption satisfaction increases significantly with 
evaluation bias. This can be expected to occur because the adoption decision is directly 
biased by individual preferences, so group members tend to adopt artefacts with features that 
they prefer. As individual preferences have more weight in the adoption decision, evaluators 
tend to adopt what they prefer more often. In contrast, when their preferences are not strong 
enough they may adopt artefacts with high fitness in features for which they have low 
preference. However, the predictability of satisfaction levels also changes as a function of 
evaluation biases: satisfaction variance is directly proportional to evaluation bias. Namely, 
with more independent adoption decisions, satisfaction is likely to be higher but it is also less 
stable and less predictable.  
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(a)                                                                         (b) 

Figure 4 Effects of evaluation bias in satisfaction levels and in cumulative adoption. When 
evaluators make more independent choices, or w = 1: (a) their choices yield more 

unpredictable but higher satisfaction levels and (b) they adopt less artefacts or abstain more. 

Somewhat unexpectedly, as Figure 4(b) shows, cumulative or total adoption is negatively 
related to evaluation bias. When adopters have low adoption preference biases (w = 0) total 
adoption is higher than with high evaluation biases (w = 1). In other words, abstention 
increases as adopters fail to see differences between artefacts.  

This seems paradoxical: adopters are more ‘free’ to make their choices and they are more 
satisfied with these choices, yet they adopt less than when they are constrained by artefact 
features and social influence. A key to this apparent contradiction is in adoption variance, 
defined as the distribution of adoption decisions between designer agents. When adoption 
variance is high, adopters tend to concentrate their choices in artefacts from a few designers, 
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whereas a low adoption variance refers to a more competitive environment where adopters 
distribute their choices across all designers.  

When  w = 0, mean adoption variance is 0.43 whilst for  w = 1, mean adoption variance falls 
to 0.33. This shows that when individual evaluation biases are stronger, adopter agents select 
artefacts from a smaller number of designers, presumably those that best satisfy their 
preferences. Therefore, when adopters have more independence on their adoption choices, 
they adopt less but are more satisfied with their choices. 

4.2. Idea differentiation 
Effects of evaluation bias (w) on two aspects of design behaviour are shown in Figure 5. The 
strategic differentiation index (SDI) measures the difference of artefacts as perceived by 
adopters. The mean SDI of a simulation run is recorded for every case. Figure 5(a) indicates 
mean and standard deviation of SDI for cases where w = 0 and w = 1. The number of 
strategies chosen during every simulation run is recorded for every designer. Figure 5(b) 
shows the aggregate for each strategy of all designer agents.  

SDI is negatively correlated with evaluation bias showing that perceived differentiation 
decreases when evaluation bias is high, w = 1. This is not only a change in adopters’ 
perception but an actual variation of strategies by designers as observed in Figure 5(b). When 
adopters are assigned high evaluation biases (w = 1), designers adapt their behaviour towards 
strategies of competition and differentiation. An explanation for this consistent effect may be 
that when adopters take more independent decisions (w = 1) designer agents are less likely to 
perceive that their artefacts address the population's preferences. This could be due to the 
reduced impact of the social influence mechanism, i.e., less group agreement emerges. 
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Figure 5 Effects of evaluation  bias in SDI and design strategies. In cases where evaluators 
take more independent decisions (w = 1), (a) design artefacts are perceived as more similar 

and (b) designer agents engage in more competition and more differentiation. 

4.3. Quality ascribed to ideas 
The last variable considered is the score assigned by opinion leaders to domain entries. These 
are entered during a simulation run with their assigned score and time of entry. Figure 6 
shows mean score and standard deviation of all cases for w = 0 and w = 1. Evaluation bias is 
positively correlated with score, i.e., in cases where adopters take more individualised 
decisions or w = 1, domain scores are higher.  
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Adoption Bias - Domain Scores
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Figure 6 Effects of evaluation bias in domain score. In cases where adopters take more 

independent decisions (w = 1) gatekeepers tend to assign higher scores to selected artefacts.  

No associated effects are seen for other domain variables such as the number of entries. This 
effect could be attributed to the individual skew produced by the impact of the evaluation 
bias in the selection of artefacts by opinion leaders, which are also evaluators and are 
therefore affected by changes in evaluation biases. In sum, when opinion leaders in a group 
have higher preference thresholds, the merit of selected artefacts can be expected to be 
perceived as higher. 

5. Discussion 
The main consequences of individual evaluation biases in the system under analysis are that 
novel ideas are likely to be better accepted or become more ‘popular’ in groups where 
evaluation biases are low than in those where individual biases are stronger. Popularity refers 
in this experiment to the cumulative or total number of adoptions.  

This implies that novel ideas may be adopted by a larger majority in groups where adoption 
choices are less independent and social influence is stronger. This could seem at first 
paradoxical inasmuch as conformity and uniformity are intuitively regarded as inappropriate 
for creativity. However, under closer scrutiny it is easy to understand how higher levels of 
group agreement may in fact facilitate unanimous adoption decisions, including the 
acceptance of new ideas. In groups where evaluation criteria are shared, adopters of novel 
ideas may be less satisfied with their choices, and experts may also assign lower values to 
domain artefacts.  

These effects represent important ways in which the individual characteristics of evaluators 
may determine the course of diffusion as well as who is regarded as creative in a group, and 
when. Although these results are constrained by the assumptions embedded in this model of 
artificial societies, they show consistency with the literature.  

In a thorough study of seven creative figures, Gardner [18] concludes that uniformity in the 
evaluation of novel ideas facilitates the emergence of prominent figures. This is replicated in 
our experiments firstly by showing that groups with stronger shared biases exhibit an increase 
in cumulative adoption. Arguably stronger group biases means that the view of a few 
evaluators influence the adoption choices of the rest. Secondly, these experiments show that 
in such types of groups the perceived differentiation of competing products also increases. 
This reinforces the idea that when evaluators are unable to emphasise their individual biases, 
their choices become normalised and this supports the rise of a few prominent designers. 

However, our experiments exhibit an opposite effect in regards to domain scores. According 
to Gardner [18], increased adoption should be accompanied with higher value ascribed to 
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novel ideas in cases with stronger group biases. In our experiments we obtain a different 
pattern: when individual evaluation biases are weaker, domain entries are ascribed lower 
values. It will be the subject of future work to determine the type of selection mechanisms 
that are likely to affect this outcome.  

In relation to group brainstorming, these experiments suggest some practical guidelines. 
During idea discussion, if members develop an agreement on explicit criteria for evaluation, 
novel solutions are likely to receive more support by evaluators. In these conditions, group 
members are also likely to perceive higher variety of ideas, and more ideas will tend to 
originate from a smaller number of participants. 

The relation between computational modelling and target socio-cognitive systems remains an 
open question. In this particular type of modelling there is a characteristic tension between 
transparency and validation or veridicality [19]. Future work will address the comparability 
between the computational model and experimental and field evidence.  
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