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Abstract

The paper describes the initial development of the data modelling and search, exploration and
optimisation processes (SEO) of a Grid-enabled problem solving environment (PSE). This
environment will enable a client to access coupled computational components sited at different
“centres of expertise”. Each centre offers a data generation and analysis approach that aids a
better understanding of the design domain whilst providing a route to the identification of
appropriate high-performance design solutions. The intention is to support satisfactory, remote
problem definition that leads to the selection and application of appropriate design search,
exploration and optimisation techniques. This should occur seamlessly so that the client is
unaware that these processes are to be undertaken at different sites. The intention is that the
system will support clients with extensive knowledge of their design domain but little expertise in
state-of-the-art data modelling and SEO processes.
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1. Introduction

The paper introduces the initial development of a problem solving environment (PSE) which
integrates data modelling and search, exploration and optimisation (SEO) services located at
geographically distributed centres of expertise. Integration is supported through Grid
technologies [1] which provide access to modelling and SEO software components via a Grid-
workflow engine. The components will provide high quality design information and solutions
that support design decision-making. These have been integrated with a Grid computing
infrastructure to provide a seamless (standards-based) connectivity between the centres and the
secure access to computational resources needed to execute the modelling and optimisation
services that are available. The paper concentrates upon the development of the Modelling and
SEO components.

The intention of the system (DIPSO — Distributed Problem-solving Environment) is to provide a
service for those clients who either do not possess the necessary in-house expertise relating to
data modelling and SEO or who need to access an off-site capability to supplement their in-house
resource. A description of the functionality of each component of the distributed system
architecture follows. The Modeller component can be accessed by clients who require a data
modelling service. The component comprises a number of ancillary data processing techniques
plus neural network and statistical modelling software for the generation of models from
incoming data sets passed into the system by the client. The Interrogator / Optimiser extracts



information relating to design space characteristics either from such data models generated within
the Modeller or directly from a parametric model that resides with a client.

The Interrogator prototype comprises a number of space-sampling techniques to identify well-
distributed points within the design space and standard hill-climbers which search from these
points. A clustering algorithm applied to the hill-climber output can provide an indication of the
number and distribution of local optima to the client. The clustering output is passed through a
simple rule-set which determines which, if any, further optimisation technique should be applied
to the problem. The Optimiser currently comprises three search and optimization algorithms: a
genetic algorithm (GA), a simulated annealing algorithm (SA) and a tabu search algorithm (TS)
[2]. The intention here is to provide a library of local and global search and optimization
procedures that can be combined to achieve robust, high-performing SEO systems. The
Knowledge Repository provides a storage capability for background information submitted by
the clients and emerging information appertaining to problem characteristics and solutions from
the Interrogator / Optimizer.

The initial distributed architecture is presented diagrammatically in figure 1. The Modeller would
be the property of one centre of expertise whereas the Interrogator / Optimiser would be owned
by another. Such centres may be geographically remote and several centres may offer similar
services giving the client the option to select and link varying service providers using criteria

relating to cost and reputation.
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Figure 1. Initial Architecture



The following sections describe the various components in more detail and illustrate their
capabilities through the presentation of results from simple test functions and an engineering
application relating to the conceptual design of an autonomous undersea vehicle.

2. The Interrogator / Optimiser

To investigate the two possible configurations of the Interrogator (i.e. coupled either directly to a
client’s parametric model or to a client via the Modeller component) let us first assume that a
client possessing a machine-based parametric model of a design problem wishes to access SEO
processes. A data exchange capability between the client’s web-enabled parametric model and
the Interrogator is established. Currently the experimental system deals only with single
objective, unconstrained problems therefore the client, via an on-line pro-forma, must define
model characteristics relating to number and type of variables (real or integer), the upper and
lower bounds of each variable range and the interval between each variable value.

2.1 Sampling the Design Space

The initial sampling of the design space is achieved either by introducing Taguchi [3] or Halton
[4] techniques. Sampling serves the following two purposes:

i) Sampling tests the robustness and the fidelity of the client’s model by presenting the
model with variable sets from diverse points across the design space.

The Interrogator provides the client with relatively simple on-line guidance and related options
such as:

“Firstly, we suggest that you run an inspection on your parametric model to verify that your
model generates the correct values. The following options are available:

e Quick Inspection — this will provide a good spread of inspection points.
e In Depth — this will take a more detailed view via a greater number of inspection points but
will take longer to process.”

Established space sampling techniques are then introduced. The second option relates to the
introduction of Halton sequences which provide a far denser sampling of the space than the first
option, Taguchi, but would be more expensive both computationally and financially. The client’s
confidence in the fidelity and robustness of the model would therefore play a role in the sampling
choice. The Interrogator component then runs either Halton or Taguchi utilizing the information
previously defined by the client relating to number of variables and variable resolution. The
resulting sample solutions (i.e. variable sets) are then passed to the client’s parametric model
which returns the calculated objective value for each solution. A complete list of the solution
variable sets and their objective values is then returned to the client. The client then has three
options:

e If some or all of the calculated solution objective values are erroneous then abandon the
process, review and modify the model and re-present for further sampling and testing.

o If all the objective values appear sensible and one or more prove to satisfy the client’s
requirements in terms of a sufficiently high-performance solution then accept these solutions
and terminate the process.



o Otherwise continue with the SEO process with the objective of discovering better performing
solutions.

ii) Sampling provides diverse starting points for exploratory hill-climbing processes.

If the client wishes to proceed then further choices are available. A Simplex hill climber can be
instigated either from:

o the most fit solution point in the sampled set;
o the best 10% of the solution points in the sampled set;
o all the solution points in the sampled set.

Assuming the third option is chosen then a hill climber is instigated from each of the sample
points and the variable set and best result of each hill-climber are then passed to the client. If any
solution identified by the hill climbers satisfies the client’s requirements then the process can be
terminated. Indeed, if all the hill climbers converge to very similar solutions in terms of their
variable and objective function values then the client is advised that it is probable that little
further improvement is possible i.e. it is likely that the solution space is unimodal / monotonic
and the optimal solution has been identified.

2.2 Clustering and Stochastic Search

If the client wishes to continue search for possible better solutions then a near-neighbours
clustering algorithm [5] is introduced to the set of ‘best’ hill-climber solutions. A series of
Interrogator-based rules then determine which further optimizer is likely to be most appropriate.
For instance:

e If just one cluster of solutions is identified but the Euclidean distance between each solution in
the cluster is significant then either a simulated annealing or tabu search algorithm is initiated
within the cluster region i.e. it is assumed that this is a high performance region containing a
number of local optima.

o If more than one high performance cluster is identified and they are in diverse parts of the
overall design space then it is considered likely that the overall search space is multi-modal i.e.
many local optima may exist across the space. It is then assumed that a more global search
process is required and a genetic algorithm is introduced.

In either case the best 10% of all solutions identified by the optimization are returned to the
client.

2.3 Illustration of the Above Processes

The output from some of the above processes is illustrated in figures 2 and 3 using two standard
test functions. This is followed by results from interrogation and optimization relating to the
conceptual design of an autonomous undersea vehicle which provide greater detail of the
processes. Given the overall complexity of what we are trying to achieve, i.e. the identification of
the primary characteristics of multi-dimensional surfaces, it is very necessary to develop and test
the various approaches in low-dimensional spaces so that potential problems can be identified.
The scaleability of techniques that prove robust at low dimension can then be ascertained through
application to more complex higher dimensional problems and subsequent analysis. Current work
is addressing these scaleability issues through application to various design domains.
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Figure 2a. Unimodal Test Function 2b. Tight cluster of best-performing hill climber
solutions
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Figure 3a. Multimodal Schweffel function 3b. Best performing hill-climber solutions
distributed across the design space

Relating to the test functions figure 2b shows the final output from simplex hill-climbers that
have commenced from Halton-generated sample points. As would be expected in a unimodal (i.e.
single peak / trough) space they have all converged to one tight cluster. As stated in the previous
section, the low Euclidean distance between solutions in the cluster prompts an advisory message
to the client suggesting that further improvement is unlikely. Figure 3b shows the final output of
simplex hill-climbers again commencing from Halton sampling points well-distributed across the
multi-modal landscape of the Schweffel function. As can be seen, the hillclimbers have ascended



those peaks closest to their starting points. Subsequent clustering results in the identification of
eleven clusters indicating high modality and leading to the introduction of a genetic algorithm
which eventually converges upon the optimal solution.

2.4 Application to the Conceptual Design of a Subsea Vehicle

Systems Engineering & Assessment (SEA — http://www.sea.co.uk) is one of two main industrial
collaborators providing either data or parametric design models for the testing and development
of the Dipso System. The SEA parametric model represents the conceptual design of a remote-
operated undersea vehicle. The model comprises eighteen variable parameters relating to vehicle
dimensions, air-breathing, propulsion and power characteristics and structural and buoyancy
considerations. The design objective is to identify a vehicle configuration that best satisfies a
range of missions that the vehicle would be expected to perform. Currently, only single missions
are being utilized although as multi-objective evolutionary approaches are introduced to the
Dipso system, several missions will be concurrently processed. A simple combination of three
criteria to determine solution performance is currently being utilized. These three criteria
comprise a Mission Metric which determines to what degree the mission was successful; a Power
Metric which determines to what degree a solution performs in terms of available power and a
Design Metric which determines to what degree a solution is under or over designed. Each of
these metrics varies from zero to one with an ideal vehicle scoring a total of 3.0. Mission and
Power scores totaling over 2.0 indicate that the mission was successful and sufficient power was
available. Design metric scores between 2.0 and 3.0 give an indication of under / over design.

Due to confidentiality issues it is not possible to define the mission utilized or to show the
variable vectors for each solution in the following results.

Step 1: The design space defined by the eighteen variable parameters is sampled at 12 points

using Halton sequences and the variable vectors relating to these points are passed to the client’s
model for evaluation. The evaluated solutions are shown in Table 1.

Table 1. Fitness of each sampled solution.

1. 0.070 7. 0.083
2. 0.069 8. 0.054
3. 0.069 9. 0.045
4. 0.049 10. 0.064
5. 0.130 11.0.073
6. 0.071 12. 0.040

This output is returned to the client along with the variable vectors relating to each solution so
that the integrity of the parametric model can be assessed. If the client considers the output to be
sensible and it can therefore be assumed that the model is functioning correctly then the SEO
process can be continued to ascertain whether better performance is possible.



Step 2. A Simplex hill climber is then initiated from each sample point.

After 30 Iterations of Hill Climbing from each point, the results are:

Table 2. Fitness of each final hill climbing solution

1. 0.337 7. 2.078
2. 0.866 8. 2.043
3. 1.187 9. 2.061
4. 0.278 10. 2.023
5. 1.625 11. 2.086
6. 0.964 12. 1.809

These results plus the associated variable vectors are returned to the client for inspection which
reveals a diverse set of solutions both in terms of their relative fitness and in terms of the
parameter values of the variable vectors. The client may therefore accept one of the better
solutions (ie solutions 7 tol1) or, as some diversity is apparent, decide to continue. Assuming that
the client wishes to continue:

Step 3: Run Clustering Algorithm on hill climber results ie cluster the solutions in terms of
similarity (Euclidean distance) between variable vectors.

The clustering results show five clusters in diverse parts of the design space which suggests that
the overall space is multi-modal and high-performance solutions exist in diverse areas. This leads
to the Interrogator’s rule base selecting a final genetic algorithm search.

Step 4: Optimise with a GA

The initial population (100 individuals) of the GA is seeded with the hill climber results. After
200 generations the GA identifies an optimal solution with an overall fitness value of 2.999. Both
mission and power metrics have been fully satisfied i.e. they both achieved a value of 1.0.

The best 10% of the solutions from the final GA generation are passed to the client.

It is now intended to utilize the tripartite fitness function of the SEA model to investigate and
implement evolutionary constraint handling techniques (i.e. various penalty functions) and
evolutionary multi-objective (EMO) approaches within the Optimizer. EMO approaches will also
be tested via the concurrent introduction of several missions.

3. The Modeller

The second configuration of the system relates to the linking of the Modeller and the Interrogator
/ Optimiser to a client who wishes to develop a data model and then identify high-performance
solutions from this model utilizing the Interrogator / Optimiser capabilities. The Modeller
component comprises a number of data pre-processing techniques including Principal
Component Analysis (PCA) and Near-neighbours Clustering. Currently underlying these pre-
processes lies a Radial Basis Function (RBF) Neural Network [6]and both Partial Least Squares
and Principal Component Regression techniques [7].



A client can download a dataset to the Modeller which will pre-process the data whilst informing
the client of the outcome of such processing. The client, once satisfied that the processed data is a
satisfactory representation, then informs the Modeller of an acceptable level of error in terms of
the required model. The appropriate modelling technique is then selected on the basis of the data
type, density and distribution. In terms of the RBF, a subset of the data is used to train the
network until the degree of fit to the remaining data does not exceed the error criteria. A
graphical representation of the improving degree of fit can also be made available to the client to
give an indication of the manner in which the modelling of the data is progressing (figure 4c).
The client is then informed that the model is now ready to be subjected to Interrogation /
Optimisation. If the client is happy for the process to proceed the Modeller establishes a
connection with the Interrogator and a data transfer capability is established that is very similar to
that previously described between the Interrogator and a client possessing a parametric model.
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Figure 4. Example output from the Modelling component



The Interrogation / Optimisation process then follows the steps identified in the previous section
i.e. the Interrogator now considers the RBF or statistical representation to be a parametric model.
However, the model testing procedures (i.e. robustness and fidelity) are not relevant when
dealing with these representations. Figure 4 shows the Modeller’s RBF generation capability
when applied to a standard statistical modeling test function [8] with differing levels of allowable
error.

4. Current and future work

As previously stated the paper has concentrated upon the development of the system components
and the above results have been generated from a stand-alone demonstrator sited within the
ACDDM Lab at UWE, Bristol. The demonstrator has provided a deal of insight relating to the
manner in which we can present high-quality information back to the client at various stages of
the modelling and interrogation procedures. Further sampling techniques that will provide
information relating directly to the nature of the problem space represented by the parametric
model are currently being integrated. It is intended that such information will be accompanied by
further recommendations as to what course of action the client may now wish to take. The
Interrogator rule-base which determines choice of stochastic optimizer is being refined based
upon problems identified from the demonstrator and this refinement will continue as search space
sampling techniques provide more definitive information.

Further techniques for extracting and displaying high-quality information will be essential as we
move from single objective problems to problems where several objectives that are conflicting to
a varying degree are involved. Standard evolutionary multi-objective approaches such as Pareto
will be included in the Optimizer and, if time permits, a simple Cluster-oriented GA will be
introduced as a further sampling technique. This will support multi-objective data visualization as
presented in Abraham and Parmee [9] and Parmee and Abraham [10]. The inclusion of various
penalty function approaches to evolutionary optimization will also be required as constrained
design problems are introduced. The objective of the current DTI funded project is to provide a
proof-of-concept and it is expected that we will be able to achieve this in terms of relatively basic
single, multi-objective and constrained design problems within the project time-scale.

The Modeller, the Interrogator / Optimiser and the SEA model have now been web-enabled at
SEA; UWE, Bristol and at WESC, Cardiff University and the first distributed trials of the system
are now underway. These trials involve two industrial collaborators, SEA and Evotec OAI who
are enabling access to parametric models and data respectively. Results from these initial trials
are fully supporting those from the stand-alone system and will be presented at the conference.

We are also discussing to what extent the client may wish to establish communication with the
Modeller and the Interrogator. The following scenarios are envisaged:

1. A ‘data’ client has confidentiality agreements with both the Interrogator and the Modeller
services. In this case the client’s data can be passed to the Modeller and the generated
model can be passed to the Interrogator. Both the Modeller and the Interrogator report back
to the client. In this scenario a minimum of data passing is required as the RBF
representation will reside in the same space as either of the two service providers.



2. A’data’ client has a confidentiality agreement with the Modeller service only. In this case
the client’s data can be passed to the Modeller but the generated model must remain in the
Modeller’s space. In this scenario data must be passed between the Interrogator and the
model residing in the Modeller’s space. Information generated from the sampling,
clustering and optimization can be passed from the Interrogator back to the client. via the
Modeller or directly to the client.

3. A’data’ client has no confidentiality agreement with either of the services. In this case the
Modeller uploads an instance of its service to the client and the model is generated within
the client’s space. Once this is achieved the instance self-destructs leaving the generated
model in the client’s space. Data must then be passed between the Interrogator and the
model residing in the client’s space. Information generated from both services are passed
directly to the client.

Similar scenarios would exist with the ‘parametric model’ where the model may remain with the
client or be passed to the Interrogator. Once the web enablement is complete these options can
be further investigated.

5. Conclusions

As previously stated the objective of this current two year project is to provide proof-of-concept
relating to the establishment of a distributed problem solving environment involving a coupled
data modeling component and an optimization component. An initial architecture involving both
of these services has been developed and results so far support the feasibility and potential utility
of this distributed problem solving approach. A stand-alone demonstrator has provided an
indication of further system requirements during the initial development stage. Such requirements
include:

o Further development of the Interrogator sampling and hill climbing techniques to minimize
computational expense.

e Refinement and significant expansion of the Interrogator rule sets which define the appropriate
choice of design search and exploration algorithms.

e Better definition and improved utility of the data pre-processors within the Modeller.
o Increased efficiency of the RBF network and statistical modeling techniques.

All of these areas are being constantly improved as whole system performance becomes more
evident through application to increasingly complex problems.

The entire system is now web-enabled and we are achieving similar results from the Grid-based
system. We do expect initial problems relating to data transfer and translation costs which will be
addressed as they arise. The development of appropriate user-friendly interfaces to the two
components is essential and these will be implemented shortly and tested by the industrial
collaborators (our ‘test clients’). Results from this implementation and from the constantly
improving Interrogator/ Optimiser and the Modeller components will be presented at the
conference.

10



Acknowledgements

The research and development described in the paper is supported by the UK DTI and EPSRC.
The authors’ wish to thank these organizations for their continuing support.

References

l.

Rana O. F., Pouchard L. (2003) Agent-based Semantic Grids: Research Issues and
Challenges. Journal of Parallel and Distributed Computing Practices.

2. Parmee I. C. (2001) “Evolutionary and Adaptive Computing in Engineering Design”.
Springer Verlag, London.

3. Taguchi G. (1987) Systems of Experimental Design. Kraus International Publications.

4. Sobol, I. M. (1967) On the Distribution of Points in a Cube and Approximate Evaluation of
Integrals. Computational Mathematics and Mathematical Physics, 7, (4), pp 784-802.

5. Jarvis R. A,, Patrick E. A. (1973) Clustering using a Similarity Measure Based on Shared
Near-neighbours. IEEE Transactions on Computers; 22[11].

6.  Haykin S. (1999) Neural Networks: A Comprehensive Foundation. Second Edition,
Macmillan, New York.

7. Jackson J. E., (1991) 4 User’s Guide to Principal Components. John Wiley and Sons, New
York.

8. Lancaster P., Salkauskas K. (1986) “Curve and Surface Fitting”. Academic Press

9. Abraham J. R., Parmee 1. C. (2004) “User-centric Evolutionary Design Systems — the
Visualisation of Emerging Multi-Objective Design Information”.
X™ International Conference on Computing in Civil and Building Engineering, Weimar,
Germany.

10. Parmee I. C, Abraham J. R. (2004) Supporting Implicit Learning via the Visualisation of
COGA Multi-objective Data. IEEE Congress on Evolutionary Computation, Portland,
USA; pp 395 —402.

I.C. Parmee

ACDDM Lab, CEMS, University of the West of England, Bristol, BS16 1QY, UK
ian.parmee@uwe.ac.uk

Phone: ++44 (0)117 328 3137

Fax: ++44 (0) 117 328 2587

http://www.ad-comtech.co.uk/ACDDM _Group.htm

11



