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Abstract 
Traditionally, designs of crafts like paper pop-up structures are manually prepared and 
typified by excessive trial-and-error work. In recent years, attempts have been made to enable 
more efficient crafting methods on computer-aided platforms. This paper discusses properties 
of paper engineered, 90° pop-up structures and how they could be applied to CAD systems for 
the design of such crafts. In particular, graph theory was used to investigate their structural 
properties. Planar graphs are found to be useful in representing two-dimensional drawings of 
pop-up structures on CAD systems. The graphs enable design verifications using Grinberg’s 
Theorem and topological conditions of crease and cut edges. A set of constraint-based crease 
equations leading to a boundary region further verifies creases’ constructions. 
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1. Introduction 
Paper engineering has been more valued for its artistic achievements in paper crafts than 
being recognized for its technological potentials. The crafts’ construction techniques like 
folding and cutting are often deemed a form of low technology [1] and seems irrelevant to 
modern digital advancements. The emerging field of origami science, however, has offered a 
new ground for study in the area of physics, engineering, genetics and computing. In 
particular, origami mathematics has unveiled fresh comprehension in mathematics by paper 
folding [2], [3], [4]. Similarly, pop-up structures are found to exhibit useful geometric 
properties [5], [6], [7]. With these findings, the digital world and the traditional crafting 
techniques have a channel to integrate, leading to the birth of a family of computational 
crafting tools. For both the individual craft enthusiast and the printing industry, such tools 
would desirably reduce trial-and-error tasks, thereby saving materials and time in production. 
Paper crafts like origami and paper models have already been experimented with robust 
design softwares such as Treemaker [8] and Pepakura Designer [9]. 

Attempts have also been made to enable design of pop-up structures on computers. Notably, 
Jun Mitani’s 3D Card Maker [10] and Sue Hendrix’s work on Pop-up Workshop [11] are 
applications that promote pop-up constructions using computer-aided design. However, the 
unique craft of pop-up structures is characterized by reversible transformations from two-
dimensional to three-dimensional space and a broad variety of linkage mechanisms. Existing 
applications are limited in the understanding of the craft’s structural attributes, and 
consequently, they do not facilitate the design of all types of pop-up structures. Hence, to 
realize a generalized computer-aided system with a systematic approach for pop-up designs, 
an extensive study in topology and geometry of the craft is vital.  
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The following section of this paper introduces the basics of pop-up structures. Section Three 
analyzes 90° pop-up structures using graph theory, particularly highlighting Hamiltonian 
plane graph and the application of Grinberg’s Theorem. Section Four examines the properties 
of crease and cut edges. Section Five describes how the graphs and their properties could be 
used on CAD systems. The paper concludes in Section Six. 

2. Elements of pop-up structures 
Pop-up structures can generally be grouped into two types, namely the 90° and the 180° 
structures [12], as shown in Figure 1. The angle refers to the angle between the two base 
pages, at which the pop-up structures fully erect. Pop-up books and cards may also contain 
fully erected structures at 270° or 360° [13]. But they are in actuality the combinations of 90° 
and 180° structures. 90° pop-up structures can be made with multi paper pieces jointed by 
gluing or constructed from a single paper piece with slits.  

Figure 1. (a) A 90° pop-up structure and (b) a 180° pop-up structure 

An essential feature of these movable pop-up structures is their ability to fold flat during a 
transformation from 3D to 2D space. The structure is flat foldable when the pop-up pieces are 
able to collapse between the two base pages as they are closed together. In this paper, the 
focus of investigation is the one-pieced 90° pop-up structures and pop-up pieces are assumed 
to be always planar. Moving paper mechanisms like the wheel and the pull-tab, which do not 
lead to 3D transformations, are excluded from the study. 

A 90° pop-up structure comprises two base pages and pop-up pieces in layers. Each layer is 
made up of two pop-up pieces and additional folds may be added on it. The structure could be 
further broken down by a representation of vertices, edges and faces, as illustrated in Figure 2. 
The definitions of these elements were given as follows. 

2.1 Edges 
An edge is a side of a pop-up piece or a base page. There are two types of edges, namely the 
crease edge and the cut edge. If a line is produced by folding, it is termed as a crease edge. 
The gutter crease, a fold that separates the two base pages, is such an edge. If it is created by a 
cut or slit on the paper, it is termed as a cut edge. Graphically, crease edges are represented by 
solid lines and cut edges by dash lines in the following sections of this paper. 

2.2 Vertices 

A vertex is a point where two edges meet. As with the edges, there are two distinct vertex 
types. A point of intersection of solely crease edges is termed a crease vertex, and a point of 
intersection of cut and crease edges is termed a cut vertex. The former is located within a 

Pop-up piece

Gutter crease
Base page

(a) (b) 
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paper piece and leads to a flat vertex fold [14], [15]. The latter is located on the edge of a 
paper piece and results in a pop-up transformation. 

2.3 Faces 

A face refers to the area bounded by crease and cut edges. Likewise, there are two types of 
faces. A solid face is bounded by a combination of crease edges and cut edges. It represents a 
pop-up piece or a base page. A cut face is bounded by only cut edges. It is a hollow area and 
can represent a slit on the paper or a cutout. In addition, there exists an exterior face on any 
graph. It is referred to as the unbounded face and would be applied in Hamiltonian graphs in 
Section 3.3. 

Figure 2. Edges, vertices and faces on a 90° pop-up structure 

2.4 Boundary consideration for base pages 
A piece of rectangular paper is usually used in the construction of a pair of base pages for a 
90° pop-up structure, as shown in Figure 3a. It is also feasible to develop the structure from a 
piece of paper of other desirable shapes, consisting of a number of edges other than the usual 
four. See Figure 3b. This raises an issue on how the edges and vertices could be examined if 
there were so many variations to the shape of the base pages. 

As the main interest in this study is the cut and crease edges that led to the development of the 
structures, the number of edges and vertices on the base pages would not affect the 
topological attributes of the structures. They are, therefore, of trivial importance here. As 
such, let us consider a boundary line to define the faces of the base pages. This is represented 
by one cut edge on each base page, as illustrated in Figure 3c. 

Figure 3. Boundary line for base pages 

Likewise, the sides of the pop-up pieces can be cut to form many variations but the structural 
compositions of the pop-up designs would not change. Hence, only the elementary pop-up 
types, the single-slit and the double-slit, are examined in the following sections. 

Solid face 

Cut face 
Crease edge Cut edge 

Cut vertex 

Crease vertex 

(a) (b) (c)
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3. Graph forms of 90° pop-up structures 

If the faces and edges of a 90° pop-up structure were to be modeled as a graph, it would form 
a planar graph [16]. A graph is planar if there exists a drawing of it in the plane in which no 
two edges intersect in a point other than a vertex. This means that the edges do not cross one 
another, regardless of the structure’s state, be it flat folded or erected. If edges cross, it could 
indicate that the jointed paper pieces are twisted or interlocks exist between them, and the 
structure would consequently not be flat foldable. Hence, the planarity of a graph corresponds 
to a structure’s ability to flat fold. However, this is an essential but not a sufficient condition 
as geometry on the structure further affects flat folds. 

Let us denote a graph of the pop-up structure as G. On G, a single-slit is characterized by a cut 
face, a crease vertex and a cut vertex. For a double-slit, G has two cut faces and two cut 
vertices. Flat vertex folds can further be added on any pop-up piece and result in additional 
crease vertices on G. 

Figure 4. Graphs of pop-up structures. (a) The single-slit and (b) its graph, and (c) the double-slit and (d) its 

graph 

3.1 Graphs of the single-slit and the double-slit 
The topology of a pop-up structure does not change when it is transformed from 2D to 3D 
space and vice-versa. The graphs in Figure 4 illustrate views that are typically produced by 
2D drawings. Similarly, they can be displayed in isomorphic forms to better represent the 
structures in three-dimensional views.  

Figure 5. (a) The single-slit graph, (b) a pyramid graph, (c) a sub-graph of the single-slit, (d) the double-slit 
graph, (e) a cube graph and (f) a sub-graph of the double-slit 

(a) (b) (c) (d) (e) (f) 

(a) (b) (c) (d) 
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Figure 5a shows a graph of the erected single-slit, which is isomorphic to that in Figure 4b. 
Notice in Figures 5a and 5b that the graph of the single-slit and the polyhedral graph of the 
semi-octahedron or pyramid contain a common sub-graph. However, a single-slit does not 
always have a pyramid-like structure. Figure 6c illustrates a variation. Similarly, Figure 5d is 
a graph of the double-slit, isomorphic to that of Figure 4d. It has a common sub-graph (Figure 
5f) as the cube graph (Figure 5e). Figure 6 illustrates the elementary structures in their erected 
forms and their graphs. 

Figure 6. Erected 90° pop-up structures (top) and their corresponding graphs (bottom) 

3.2 Base graphs and layers 
The two sub-graphs in Figures 5c and 5f form the building units of pop-up layers. Let us term 
them as the base graphs. Additional pop-up layers can be represented by attaching these base 
graphs onto the crease edges of an existing graph. This is achieved by dividing a crease edge 
of the existing graph into two and joining their ends with vertices of the base graphs. But not 
all vertices of a base graph can be jointed with the crease edge. Section 4.1 explains the 
topological conditions essential for the merger of graphs.  

Figure 7. The graphs depicted the development of a 90° pop-up structure from (a) the first layer, to (b) the 
second layer and finally (c) the third layer. (d) A graph of a structure made up of two double-slits. 

(a) (c) (d) (b)

(a) (c) (d) (b)



 6

Figures 7a to 7c give an example of a graph development for a three-layer pop-up structure 
that was made up of two double-slits and one single-slit. Figure 7d shows a graph of two-
layer pop-up structure comprising double-slits. 

3.3 Hamiltonian plane graphs 
If the planar graph is further embedded on a plane, it is a plane graph. G is observably a plane 
graph since an one-piece pop-up structure is made from a planar piece of paper. On G, a 
closed trail passes through all vertices. Such a trail is a Hamiltonian cycle and a characteristic 
of plane graphs. Figure 8 shows possible trails (bold lines) for Hamiltonian cycles on some 
graphs. 

Figure 8. Hamiltonian cycles of (a) a single-slit, (b) a double-slit and (c) a three-layered pop-up structure.  
To verify that G is Hamiltonian, Grinberg’s Theorem [17, 18] could be applied. The theorem 
states that if a loopless plane graph has a Hamilton cycle C, then  

 i − 2( ) φi
' − φi

''( )
i= 2

n

∑ = 0 (1) 

where '
iφ and ''

iφ are the number of faces of degree i contained in the interior of C and exterior 
of C respectively. If the theorem is not satisfied, G is not Hamiltonian and may contain 
vertices and edges leading to a flawed design of a pop-up structure. For example, Figure 9a 
illustrates a non-Hamiltonian graph that cannot model a pop-up structure. The non-
Hamiltonian graph in Figure 9b has a crease edge and a cut edge that are redundant. 

Figure 9. (a) and (b) are non-Hamiltonian graphs. (c) The numbers indicate the degree of the faces on the graph. 
To exemplify the application of the theorem, the Hamiltonian cycle on the graph in Figure 9c 
was analyzed. The degree of a face is the number of edges that bounds the face. In the interior 

(a) (b) (c)
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of the cycle, there are two faces, one of degree 4 and 5. On the exterior of the cycle, there are 
four faces, one of degree 2 (unbounded face), two of degree 3 and one of degree 5.  

i − 2( ) φi
' −φi

''( )
i= 2

n

∑
= 2 − 2( ) 0−1( )+ 3− 2( ) 0− 2( )+ (4 − 2)(1− 0) + (5− 2)(1−1)
= 0

 

Thus Grinberg’s Theorem offers a method to validate the graph structure. However, this 
validation is not adequate, as it cannot inspect the nature of the edges or the localized 
configurations of the crease and cut edges. In the next section, relationships of crease edges 
and cut edges will be analyzed. This includes an examination on the topological conditions for 
cut and crease edges and a previous study [19] on the boundary region for creases. 

4. Properties of crease and cut edges 

4.1 Topological conditions for edges 
Several conditions govern the topology of crease and cut edges. Technically, they define how 
the folding and cutting techniques can be appropriately applied together to develop the pop-up 
structure. On the graphs, these conditions ensure that the topological elements are correctly 
connected together, inclusive of developments in additional flat vertex folds and successive 
pop-up layers on a structure. The cut edges in the following conditions belong to slits that 
would lead to pop-up formation. They do not refer to those of cutouts.  

1. The number of adjacent cut edges on G is always two. 

In order for a pop-up layer to fold, crease edges have to intersect cut edges. A slit across a 
crease edge creates a pair of cut edges jointed at the intersection, which is also the cut 
vertex. Additional adjacent cut edges at the vertex do not produce pop-up layers and is 
redundant. It is like producing a tear on the paper. 

2. The two cut edges should, individually or together, be part of a cycle of cut edges of at 
least four, and the sum of the cut edges in the cycle is always an even number.  

This is essential for the formation of a cut face on the pop-up structure, which is bounded 
by at least four cut edges. Furthermore, cut edges are the sides of solid faces. It has been 
shown that the number of solid faces is always even [19]. Hence, since the number of 
solid faces is even, the number of cut edges must also be even. 

3. At least one crease edge has to be adjacent to the pair of cut edges on G. 

Related to condition 1, there must be crease edges adjacent to the cut edges so that pop-up 
layers can be developed and raised. There is no upper limit to the number of crease edges 
adjacent to the cut edges. 

4. The number of crease edges not adjacent to any cut edge is even.  

These crease edges intersect at the crease vertex, leading to single vertex folds. The 
condition can be derived from Maekawa’s theorem [14]. 
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4.2 Boundary region for creases 
There are two types of creases, namely mountain creases and valley creases. A crease can be a 
mountain crease or valley crease, depending on the side the paper is facing up. See Figure 10. 
In the previous study [19], the combination of these crease types to build a 90° pop-up 
structure was examined. The crease types are found to exhibit sequential patterns as pop-up 
layers are added. The patterns are expressed in equations and set on a graph termed MV graph. 
In turn, the lines describing the equations form a boundary region, as illustrated on Figure 11. 
The region encloses the domain for feasible constructions of the structures and their abilities 
to flat fold. These findings do not use graph theory and do not entail cut edges.  

Figure 10. (a) A mountain crease, (b) a valley crease and (c) a two-layered structure 
In the equations, M and V denote the number of mountain and valley creases respectively. The 
gutter crease is taken to be a valley crease unless otherwise stated. M and V would interchange 
if the gutter crease is assigned as a mountain crease. To form the first pop-up layer, two 
additional valley creases and one mountain crease are required. Therefore, to create a 90° 
pop-up structure, there must be at least four creases. This gives a boundary inequality 

  M +V ≥ 4. (2) 

There are two ways to add layers to a structure. For example in Figure 10c, the first layer of 
the structure was built over a valley (gutter) crease and the second layer was built over a 
mountain crease. When successive pop-up layers are built on existing mountain creases on the 
structure, the relationship between mountain and valley creases can be expressed as 

  M = 2V − 5,  V ≥ 3. (3) 

On the other hand, if the successive layers are constructed on existing valley creases, the 
relationship becomes 

  V = 2M +1,  M ≥ 0. (4) 

The latter two equations bound the relationships of crease types as increasing number of 
layers are built, and the boundary region formed is semi-infinite. Though there is no 
theoretical upper limit to the creation of layers and creases, it is known that physical 
properties, such as the thickness of the paper, limit the number of layers to be added. 

First layer

Second layer

(a) (c) (b) 
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No. of mountain crease M
0

M = 2V - 5

V = 2M + 1

R

V

M +V = 4

Non-feasible region

 

Figure 11. The feasible region R for creases’ constructions on 90° pop-up structures 
On the MV graph, it is also feasible to trace a path within the region. The path depicts the 
development of creases and layers. In Figure 12, the solid lines represent pop-up layers. The 
dotted lines represent the creation of new layers over mountain creases. Mathematically, each 
is characterized by a gradient of 2. On the other hand, the dash lines represent the creation of 

new layers over valley creases and each has a gradient of 
 
1
2

. The intersections of these lines 

locate possible combinations for the numbers of mountain and valley creases. 

No. of mountain crease M
0

V

 

Figure 12. Paths depicting development of creases and layers 

Figure 13 shows two examples of MV graphs representing the crease characteristics of 
corresponding pop-up structures. The point (0, 1) represents the gutter crease, which is a 
valley crease. In Figures 13a, the first layer is achieved by creating a double-slit over the 
gutter crease. It is represented by the point (1, 3) in Figure 13b. The second layer is a single-
slit added over a valley crease on the first layer. By the second layer, the structure has a total 
of two mountain creases and five valley creases and is represented by (2, 5) on its MV graph. 
In Figure 13c, the third and last layer is created over a mountain crease, as shown by the 
dotted line on its graph (Figure 13d). As shown on that graph, a total of four mountain creases 
and six valley creases embody the structure. 



 10

Figure 13. MV graphs. (a) A two-layered structure and (b) its corresponding graph, and (c) a three-layered 
structure and (d) its graph 

Thus, the identification of the boundary region enables the viable permutation of mountain 
and valley creases that resulted in foldable pop-up structures. Furthermore, the development 
of the structures could be shown on MV graphs. These findings would further complement the 
study of crease edges in graph theory when the assignments of crease types are to be 
specified. 

5. Applications on CAD systems 

Figure 14. A possible structure for CAD systems 

By mapping 2D outlined sketches of pop-up structures on paper as planar graphs, the design 
of the structures can be digitally realized and presented on CAD systems. The design can be 
represented as topological elements and verified in three levels, as shown in Figure 14. 

• The first level validates a feasibly drawn design by examining if all vertices can be 
connected in a single cycle of edges. This can be mathematically performed with 
Grinberg’s Theorem, which involves calculation on faces, when applied on CAD 
systems.  

• The second level looks into the type of edges making up a pop-up structure and 
matched with topological conditions of crease and cut edges surrounding a face or 
intersecting at a vertex.  

• The third level analyzes the assignments of crease types and their combinations on a 
structure. Any combination of mountain and valley creases that falls out of the 
boundary region would render the design inapplicable. 
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These verifications are helpful in minimizing manual trial-and-error work such as the check to 
ensure the structures’ flat foldability and sufficiency in number of creases. On CAD systems, 
they would form part of the backbone that supports a set of functions on the user interface, 
which permits the building of pop-up structures. The systems would also contain another set 
of functions that enables artistic capabilities like colouring and the insertion of texts and 
graphics. Besides the utility to print on paper, they would additionally incorporate the 
rendering of three-dimensional views and animations of the pop-up mechanisms when 
opening and closing the base pages.  

6. Conclusions 
90° pop-up structures can be represented by planar graphs. Properties of these graphs can be 
applied to 2D drawing functions of pop-up structures in computer-aided systems. In addition, 
the crease and cut edges of these structures hold topological relationships and conditions that 
are useful for design verifications, especially in the structures’ ability to flat fold. However, 
topological correctness does not mean that a structure is geometrically possible. There are 
cases where topological conditions are satisfied but flat folds cannot be achieved due to 
interferences of adjacent moving pop-up layers. For example, no pairs of crease edges 
adjacent to a pair of cut edges should form an angle less than 180° on the base pages. If this 
geometric condition were violated, the structure would not be flat foldable. Therefore, 
geometric limitations in the structures’ movements require a more thorough study so as to 
effect a deeper understanding in the craft’s design.  
An extension from this study has also led to the creation of a methodology on how a 
polyhedral can merge with a pair of base pages and become flat foldable. This is described 
with properties of crease and cut edges. In order to realize a generalized CAD platform, our 
on-going work has also encompassed the study of intrinsic characteristics exhibited by 180° 
pop-up structures. The study is further supported by a CAD prototype, presently in the 
process of construction. This project would ultimately benefit paper engineers and craft 
enthusiasts, and bring about enrichment to the design environment of pop-up structures, one 
that could appropriately aid the learning of the craft in this digital age. 
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