
 1

INTERNATION CONFRENCE ON ENGINEERING DESIGN
ICED 05 MELBOURNE, AUGUST 15-18, 2005

A SITUATED QUESTION-DRIVEN AND MODEL-BASED APPROACH TO
DESIGN REASONING

Dr. Ulf Sellgren

Abstract
A complex system is a system with many components and interconnections, interactions, or
interdependencies that are difficult to describe, understand, predict, manage, design, or change.
Complex technical systems are characterized by the level of complexity and uncertainty.
Uncertainty appears mainly in system behaviors and the ways different aspects of a system
change with time. The uncertainty, which can be seen as a direct consequence of the complexity
and it increases with the scale and the scope of the system, will normally decrease as we gain
insight and knowledge about the system.

Engineering design of complex technical systems depends much more heavily on computer
simulation than design of smaller and less complex products. The main objectives for simulations
is to assist design reasoning by helping to identify unintended and accidental interactions
between components and to assess and verify the system in early design stages. The special
character of product development and engineering design require that this reasoning process is
situated and that the model definitions are based on “systems thinking”. This paper elaborates on
a formal basis for model-based design reasoning and presents a formal knowledge framework for
model-based design reasoning.

Keywords: Design question, knowledge management, model-based design reasoning

1 Introduction
It is widely agreed that technical systems increase in size, scope, and complexity as a result of
globalization, new technologies, increasing customer expectations, and tougher social
requirements. A complex system is a system with many components and interconnections,
interactions, or interdependencies that are difficult to describe, understand, predict, manage,
design, or change. A technical system, which is a system designed by humans, is a complex set of
physical components and interfaces. An interface may be defined as “a boundary or
interconnection between systems or their components that define or support interrelationships;
interfaces may be intended or unintended” [1]. Interface specification and design are concerned
with making the components interoperable, including making the interaction between human(s)
and technical system intuitive and unambiguous. Components are parts of a system relative to
that system. A component can be a system too if it contains other components (and interfaces).
The purpose and the intended physical behavior of the individual components of a technical
system are often well-defined (although possibly poorly understood), but the interactions, which
take place at the interfaces between the components, are frequently difficult to describe and
understand, thus, making the behavior of the system difficult to predict and, consequently,

 2

difficult to design. The two most characteristic aspects of a complex technical system are
complexity and uncertainty [1]. Uncertainty appears mainly in system behaviors and the ways
different aspects of a system change with time. A system can be classified as behaviorally
complex if its behavior is difficult to predict, analyze, describe, or manage. If the number of parts
of a system is large and the interconnections between its parts is hard to describe briefly, the
system is structurally complex. The uncertainty, which also can be seen as a measure of the
complexity, increase with the scale and the scope of the system. The uncertainty will normally
decrease as we gain insight and knowledge about the system through (virtual and physical)
prototyping and use.

Aristotle’s postulated that our knowledge resides in the questions we ask and the answers we can
provide [2]. Most of the published question-research (education, artificial intelligence, cognitive
psychology) has been focused on convergent thinking, where the questioner is assumed to
converge on “the facts”. By studying questions that are raised in design situations, [3] identified
an important class of questions, which he labeled “generative design questions”. These questions
are characteristic of divergent thinking, where the questioner is attempting to diverge away from
the facts to the possibilities that can be generated from them. “Engineering is question intensive”
[3] and, consequently, question-asking is a fundamental cognitive mechanism in design reasoning
and it can be treated as a process.

A (computer-based) model may be viewed as a complex object composed of explicit and implicit
knowledge. Anyone with access to a model can pose a question to the model (e.g., on the
behavior and the performance of the modeled object) and hopefully formulate an answer to that
question. Modeling is a cognitive act of structuring and simplifying information. Computer-based
models are consequently cognitive constructs that assist us to manage technical complexity and
reduce uncertainty. A model is thus a cognitive tool for design reasoning.

Each model must be targeted for a specific purpose [4]. The purpose of a model is defined by the
engineering question and its context. Furthermore, models are related to each other in one or
several ways (e.g., causally related) and they thus form a structure of knowledge. Design
reasoning does not only transform questions into answers, which represent new knowledge, but
also transforms questions into questions. Further more, in engineering design an answer may
exist but the question is not known.

A research challenge is to define a formal process to enable and assist model-based design
reasoning. The special character of product development and engineering design require that this
process is situated [5] and that the definition of the models are based on “systems thinking”. This
paper discusses the formal basis and presents a formal knowledge framework for question-driven
and model-based design reasoning.

2 Background to systems engineering
Systems thinking involves the use of various techniques to study systems of many kinds. It
includes studying things in a holistic way. It aims to gain insight into the whole by understanding
the linkages, interactions, and processes between the elements that comprise the whole system.
The goal of systems engineering is to transform mission, operational requirements or remediation
requirements into system architecture, performance parameters, and design detail [6]. A systems
view implies that the components and the interfaces of a system are treated in a similar way.

 3

Whenever the engineering task must reconcile technical considerations with non-technical design
criteria, it seems to be necessary to use diverse strategies and techniques [7]. This is in contrast to
the prescriptive design methodology view of applying a uniform, technically-based
decomposition approach (e.g., conceptual design with a “function structure” in [8]. Because most
of the actual design work in industry also can be characterized as adaptive design, many
practitioners in industry seriously question the role of the function concept as a useful entity in
product development.

Nevertheless, the functionality of an artifact describes and represents a part of the designer’s
intention or design rationale [9]. Based on an extensive classification study of highly complex
natural systems (e.g., biological systems and cosmic systems) and engineering systems (i.e.,
systems that are human designed and having both significant human and technical complexity)
[10] found that function type as originally proposed in [11], [8], and [12] is the only technical
attribute able to differentiate among engineering systems. Function is consequently a
characteristic product attribute that captures important knowledge about an existing product or
component whenever a task involves adaptive design, re-design, and/or design by analogy.

The FBS framework [13] is a formal representation of the processes of designing. It represents
the developing design in different states. The basic assumption is the existence of three classes of
variables: function, behavior, and structure. They are linked together by eight classes of
processes, which transform one class into another (see figure 1).

Figure 1. The FBS-framework, after Gero [13]

The eight processes in the FBS framework that are shown in figure 1 are claimed [13] to be
fundamental for all designing are ; formulation (1), synthesis (2), analysis (3), evaluation (4),
documentation (5), reformulation type 1 (6), reformulation type 2 (7), and reformulation type 3
(8).

Qian and Gero [14] defined two designs to be analogous if they have a similar function or similar
behavior. Two analogous designs may or may not have similar structures. By defining
associations between function, behavior, and (product) structure, they presented a function-
behavior-structure (FBS), or a causal knowledge, formalism of design knowledge representation
and utilized it in a framework for analogy-based creative design (ABD).

Prabhakar and Goel [15] introduced the idea of function as resulting from the interaction between
a device and its environment, and developed a functional representation scheme, referred to as
the Environmentally-bound Structure-Behavior-Function or ESBF model, and a processing
strategy, called Environmentally-driven Adaptive Modeling (EAM), for adapting existing design
to new environments. The ESBF model views a device function as an abstraction of the
interactions of the device with its external environment. This is in contrast to most functional
representation schemes, including the SBF-model, where function is viewed as an abstraction of
the internal behavior of the device.

F S D

BsBe

1 2

5

3

6

4
7

8

F = function
Be = expected behavior
Bs = behavior derived from structure
S = structure
D = design description

= transformation
= comparison

F S D

BsBe

1 2

5

3

6

4
7

8

FF SS DD

BsBsBeBe

1 2

5

3

6

4
7

8

F = function
Be = expected behavior
Bs = behavior derived from structure
S = structure
D = design description

= transformation
= comparison

F = function
Be = expected behavior
Bs = behavior derived from structure
S = structure
D = design description

= transformation
= comparison

 4

To represent designing in a dynamic world, Gero and Kannengiesser [16] included the
environment and reconstructed the eight fundamental processes in the original FBS framework
and proposed the situated FBS-framework.

2 The function-behavior-implementation-environment (FBIE) model
The purpose of presenting an adapted systems model of components and interfaces is to enable
design, communication, and verification of the components of technical systems and the
interfaces between the components and between the technical system, its environment, and the
human operator(s)/user(s). This paper is a contribution to the development of an integrated,
logically rigorous representation and management of complex technical systems and the system
models that are used for performing design reasoning.

The chosen approach to model management is to develop a framework that is based on a
modified and extended FBS-model. In order to have consistent taxonomy for the aspects relevant
to systems engineering, the term structure (S in the FBS-model) is replaced with the term
implementation (I). Further more, to acknowledge the situated nature of product development, the
environment domain (E) is included. Consequently, we are further on referring to the FBIE
domain-model. Figure 2 shows the four primary FBEI-domains and the associated (the original)
customer domain that represents who the product is intended for and all the requirements that are
directly related to the customer in a broad sense (i.e., the end-user(s), the realizing company, and
the society through its legislation). The requirements on the FBIE-model is to enable components
and interfaces between components in mechanical, electronics, hydraulics, and software systems
to be treated in a consistent way, and to allow environment-machine and human-machine
interaction aspects to be treated in a similar way. The FBIE-model is intended to enable efficient
interface definition, representation, and use in engineering in general and modeling and
simulation of product behavior and performance in particular.

Figure 2. The customer domain and the four primary domains in the FBIE-model

By using functional reasoning, a desired function can be mapped onto its implementation
structures straightforward or via (intended) behaviors which are taken as the bridge between the
function and the implementation (structure). Function is regarded here as the intended use of an
artifact. Intended behavior is considered as the means by which (or how) a function is achieved,
and it expresses physical state transitions or physical phenomena (principles). Implementation
refers to the physical components or forms and structures that are utilized to achieve the intended
behavior. Actual behavior is normally the behavior that can be observed when an implementation
structure is influenced by its environment. This type of behavior can be classified as an
exogenous or indirect behavior [14]. Sometimes the actual behavior can be derived directly from
the implementation structure without any external effect. In this case the actual behavior can be
characterized as structural or direct [14]. Actual behavior can be decomposed into intended
behavior, unintended behavior (side effects), and accidental behavior (faults or errors). Function,
behavior and implementation (structure) are referred to as product, component, and interface
characteristics. Effects and properties that are external to the product but have a significant

Function
domain
(Why?)

Behavior
domain
(How?)

Implementation
domain
(What?)

Environment
domain

(Where?)

Customer
domain
(Who?)

 5

influence on the actual behavior of the product are referred to as environment characteristics.
End-users and other human agents that interact with a product are interactive part(s) of the
products environment. If the scope of an investigation is the interaction between two components
in a product, the other components and interfaces of the product may be regarded as environment,
i.e. objects that are external to the focused system.

2.1 Function domain
The function tells what the design is intended to do (i.e., the purpose) and is often used for
specifying design requirements, sometimes referred to as functional requirements (e.g, [17]). This
purpose can be defined as relationships between inputs and outputs of energy, mass, and
information, or as a change in the fluxes thereof (e.g. [14]). Manipulation of flows (or fluxes)
involves actions. Function can, thus, be characterized by two kinds of variables – action and flow
– that can be classified into two taxonomy hierarchies. The action taxonomy represents a
hierarchy of verbs (e.g., store, transport). In the flow taxonomy, the flow superclass is
categorized into material, energy, and information subclasses. These three subclasses can be
categorized further. For example, energy may be mechanical, which may be further classified as
kinetic or potential, and so on.

Actions and flows can be decomposed in many different ways, but some decompositions are
more convenient to use than others. In [18], Little et al. refer to their set of actions and flows as a
basis set. The mathematical definition of basis requires that the set spans the space and the
components of the set are linearly independent. For example, in many engineering situations the
eigenvectors of a dynamic is a convenient and thus attractive basis set. The set of functions and
flows proposed in [18] and further elaborated on by Stone [19] is a basis set in a qualitative
sense. It is further on referred to as the Little function base set and it is used as if it was a base set
in a strict sense

Figure 3 shows a qualitative causal relation graph of the function domain and its relations to the
other domains of the FBIE-model. F1 is a required function that can be decomposed in an
interactive subfunction f11i and a technical subfunction f12t. The technical subfunction is realized
by the intended behavior b1i and implemented in i1. The interactive subfunction defines a user
aspect e1 of the environment and its relation to the implementation i1. The implemented structure
i1 and the environment e1 induces an actual behavior b1a that is decomposed has to be evaluated
against the intended behavior b1i,. This evaluation also shows an unintended component of the
actual behavior, which requires a counter-measure. This counter-measure is defined by the new
function f2 that is realized by a new intended behavior b2i and implemented in the new and more
detailed structure i2.

Figure 3. The function domain as a qualitative causal relation graph

Function
domain

f1 b1i

i

e

f2

b1a

i

Decompositio
Mappin

Compariso

f function
ft technical function
fi interactive function
bi intended behavior
ba actual behavior
i implementation
e environment

b2i

f11i

f12t

 6

The actual function objects in the functional domain are typically results of analysis of end-user,
corporate and regulatory requirements. The objective is to define the purpose of the product and
to use functional decomposition as a means to reduce complexity by breaking the development
task into smaller and manageable pieces.

The preferred approach to create, verify, validate, decompose, and compare required functions is
to have function attributes that are pointers to the context (e.g., the project task description) and
the list of stated customer requirements.

2.2 Behavior domain
Multiple functions and multiple side effects, such as vibration, friction, wear, heat, fatigue, and
crack growth, are fundamental characteristics of many technical products [20]. Behavior is
defined here as a change of state of an object or of the relation between the object and the
external world. From a functional perspective, behavior manifests functionality and state changes
of the implemented structure [14]. This aspect of behavior, which is strongly related to intention,
or function, reveals the meaning of the implementation with or without the relations to external
effects, is referred to as the intended behavior and it is causally derived from the required
function.

In the FBIE-model, a distinction is made between three categories of behavior: intended
behavior, unintended behavior, and accidental behavior. Intended behavior is thus the means by
which a function is achieved. Unintended behavior is a side-effect that may require an additional
sub-function to counteract, eliminate, or reduce the undesired side-effect. Unintended behavior is
normally caused by physical interactions between the system components, i.e. they are focused at
the interfaces between the components (e.g., friction-induced thermal effects between surfaces in
contact), An accidental behavior is an unintended behavior that is caused by an accidental
relation/interaction between product pieces (e.g., a cable placed too close to a hot component
such as a motor block). An accidental behavior is a design error. Engineering design is much
about maximizing the intended behavior of the evolving product, minimizing the unintended
behavior, and avoiding the accidental behavior.

Figure 4 shows a qualitative causal relation graph of the behavior domain and its relations to the
other domains of the FBIE-model. B1i is the intended behavior required to realize function f1. It
is implemented in i1. B1i is decomposed into sub-behaviors b11i and b12i. The implemented
structured i1 and the environment e1 induces an actual behavior b11a that is decomposed into an
intended actual behavior b11ai that has to be evaluated against b11i, an unintended behavior
b11au, and an accidental behavior b11aa. The accidental behavior requires a modification in i1.
The unintended behavior is decided unacceptable and it thus requires that a new function (f2) is
introduced. This function is realized by a new intended behavior b2i and implemented in the new
and more detailed structure i2.

Behavior
domain

f1
b1

b11a

i

e

f

b11
b11a

b11a

i

b12

Decompositio
Mappin

Compariso

bi intended behavior
ba actual behavior
bai intended actual behavior
bau unintended behavior
baa accidental behavior
f function
i implementation
e environment

b11

b2

 7

Figure 4. The behavior domain as a qualitative causal relation graph

The actual behavior objects in the behavior domain are typically results of physical tests or
simulations. Planning a test or creating a simulation model is a combined act of science and art.
To be able to assist decision-making in product development projects with tight time constraints,
a model should for example be optimized for the targeted problem, e.g., evaluate the
eigenfrequencies below 10 Hz, or determine how much of the product life time that is consumed
after 100 cycles of normal operation. The scientific part of the task is to identify and represent the
physical phenomena that are relevant for the problem. The art is to create a representation that is
as simple as possible, but not too simple. A reasonable level of detail will most likely show an
“actual” behavior at a reasonable level of accuracy. Sometimes, a physical phenomenom is
considered irrelevant for the targeted behavior and it is thus not included or monitored in the
physical or virtual tests. A more thorough study would perhaps show unforeseen interplay
between physical phenomena and even between physical components. It is important to
remember that models and test pieces are cognitive tools with the purpose to help people
understand and ultimately manage complexity. Sometimes, highly coupled phenomena and/or
components in an implementation are decoupled on purpose and then coupled in a subsequent
study, just to make us understand what is going on and why it is happening.

The preferred approach to create, verify, validate, decompose, and compare “actual” behavior is
to have behavior attributes that are pointers to the context (e.g., the product model as_is) target
problem (or more precisely the engineering question), and the stated model requirements.

2.3 Implementation domain
The ultimate design goal is achieved by conscious ordering and planning of components. A
component is either physical or logical and the relations between the components are physical
connections or logical links [14], or physical and logical interfaces, respectively. The
implementation system structure specifies what components the design is composed of, what the
attributes of the components are, and how they relate.

Any implementation system is composed of components. A component can be either a physical
entity (e.g., a gearbox) or a logical entity (e.g., a numerical array). A basic component is single
material body (e.g., a screw) that cannot be disassembled. Some components group together and
form a sub-system or a module. For example, a keyboard is a module of a computer and a
gearbox is a module of a drive-train in a vehicle. In a higher order system, a sub-system is a
component of that system. A component has many attributes or properties. An attribute is
characterized by an attribute variable (e.g., shape or color) and a value (e.g., cube or yellow),
which may be continuous (e.g., a cube with variable dimensions) or discrete (e.g., a selectable
set.of cubes). The relations between the components of an implementation structure can be
physical or logical. A part-of relation between component and sub-system is a logical relation.

An implementation structure can be defined as static, dynamic, or hybrid. A static structure has
components, attributes, and relations that are fixed in time. If the components, attributes, and/or
their relations can be changed, the structure can be defined as dynamic. For example, a fuel
injection system with valves than can open and close is a dynamic system.

Figure 5 shows a qualitative causal relation graph of the implementation domain and its relations
to the other domains of the FBIE-model. I1 is a direct implementation of function f11 and an
indirect implementation of function f12 (via the intended behavior b1i). Due to effects from the
environment e1, the implemented structure i1 (decomposable into components and interfaces) has

 8

an actual behavior b11a that has to be analyzed and checked against the intended behavior. The
actual behavior shows some accidental behavior which require a direct correction of a design
error in i1 and an unintended behavior or side-effect which require a new subfunction f2. This
counter-measure is realized by a new intended behavior b2i and implemented in the new and
more detailed structure i2.

Figure 5. The implementation domain as a qualitative causal relation graph

The preferred approach to create, verify, validate, decompose, configure, and compare
implementations is to treat an implementation as a composition of components and (technical and
interactive) interfaces and to have implementation attributes that are pointers to the context (e.g.,
the list of customer requirements) and the set of required functions and/or intended behaviors.

2.4 Environment domain
Environment can be defined as an object imposed onto the implementation system (e.g., cooling
water flowing in a car radiator), an environment around the system (e.g., the temperature and
velocity of the cooling air stream around a car radiator), or an operation interacting with the
product (e.g., an operator pushing a button that activates a function in the car interior climate
system). This definition of environment is equivalent to the term external effects used in [14].
Further on, the three environment subcategories defined above are referred to as functional
environment, operational environment, and natural environment, respectively.

Figure 6 shows a qualitative causal relation graph of the environment domain and its relations to
the other domains of the FBIE-model. An environment e1 is initially defined in the customer
requirements and reformulated as a required function f11. The effect from the environment is
defined by the interaction between e1 and the implementation i1 at a specific interface and
assessed as an actual behavior b11a.

Figure 6. The environment domain as a qualitative causal relation graph

Implementation
domain

b1i

e1
f2

b11a

i2
b2i

i1c1
i1i1 i1c2

Decomposition
Mapping

Comparison

bi intended behavior
ba actual behavior
f function
i implementation
ic implemented component
ii implemented interface
iit implemented technical interface
iii implemented interactive interface
e environment

Detailing

i1

f11

i1ii1 i1it1

f12

Environment
domain

f1

b1
e1

f b11a

i Decompositio
Mapping

Compariso

bi intended behavior
ba actual behavior
f function
i implementation
e environment
ef functional environment
eo operational environment
en natural environment

b2

e11n e11f e11

i1

 9

The preferred approach to create, verify, validate, decompose, configure, and compare active
environments is to treat the environment as an entity that can be decomposed into sub-entities
(functional environment, operational environment, and natural environment) and to have
environment attributes that are pointers to the context (e.g., the list of customer requirements) and
the set of defining functions, and the derived actual behaviors.

3 An example of FBIE-assisted design reasoning
Take the design of a new truck seat (see figure 7) as an example that can be used to demonstrate
the FBIE-approach to management of behavior models in general and interface models in
particular. The seat will be developed as an optional module in a heavy truck family and it will be
used by a variety of drivers with different characteristic properties, such as length, weight,
preferred sitting position, etc. Assume that there is a subtask to design the interface between the
new truck seat and the truck floor platform.

Figure 7. Truck and driver can be viewed as truck set environment objects.

The perhaps most important requirement on a set-truck interface is that it must firmly fixed at the
defined location. With the taxonomy defined by the Little base set this requirement may be
formulated as the main function support seat (f1). Further more, f1 can be decomposed into three
sub-functions; position seat (f11), secure seat (f12), and branch seat (f13). Position seat is the
required function to orient and align the seat at the target position (u). Secure seat is the function
to attach and hold the seat within a position interval (±δu). Finally, branch seat is the requirement
to allow the seat to be disconnected and reconnected for maintenance, service, and upgrade
reasons.

The main function (f1) may for example be solved, realized, or implemented with a screw joint
concept (i1). The intended (target) behavior (b1i) to accomplish f1 is to keep the seat-floor
interface position within the target position (u±δu) for a set of external effects (e1, e2) and within
a geometric design space (e3). The external effects, or environment objects, e1 and e2 are defined
by functions f2 and f3, respectively. The function f2 defines the required stiffness, or alternatively
the allowed flexibility, of the interface, with respect to allowed movements and the frequencies of
the complete system. Function f3 is a safety related crash requirement. Environment e3, which is
the boundary of the geometric envelope of the targeted truck family cabins, is defined by f4. The
objects e1, e2, and e3 are environment representations of f2, f3, and f4. An environment object
has an interactive relation to one (or several) spatial feature(s) in the implementation system (e.g.,
a pressure acting on a surface).

 10

Figure 8. Causal paths (sep 1) between four domains (FBIE).

The main engineering question is how the implemented concept (i1) fulfills the technical
function f1 and environment functions f2, f3, and f4 (i.e., what is the real behavior b1a of the
implemented structure i1). For obvious reasons, it is beneficial to decompose this question into
several subquestions, each with a more limited scope. Figure 8 shows how b1 is decomposed into
sub-behaviors that are related to the subfunctions f11 and f12. Figure 8 indicates that the
positioning problem related to f11 is addressed first. At a first glance, the position seat function
(f11) is realized by an actual behavior (b11a), which can be viewed is a direct behavior [14] that
is given by the spatial dimension and orientation parameters, and it can be visualized and
quantitatively obtained by performing CAD assembly orientations, such as mate and/or align)
between pairs of mating surfaces on the implementing system. In our case, the correct position
(i.e., b11i) is probably not only that the mating features of the seat and the truck floor fit together
(i.e., a direct behavior) but also a spatial relation between the seat and other features of the
environment, such as door, steering wheel, and pedals (i.e., an indirect behavior), This justifies
that the interaction between i1 and e3 is also considered when the actual positioning of the seat
(b11a) is evaluated. This actual (nominal) position (b11a) must be compared to the intended
nominal position. If we assume that we have detected a difference between the target position
b11i and the actual position blla, this difference can be interpreted as an accidental behavior
b11aa, which can be removed by creating a modified implementation i2. In our example, I1 is a
representation of nominal geometry. In more advanced situations, the effect of geometric
tolerances (a range) is also a significant issue. In that case, b1a is a range and b1i must also define
a target position and the acceptable deviation. This can either be addressed by extending f11 with
a position range or by formulating the range as a subfunction to f11 (e.g., f111)

Figure 9. Causal paths (step 2) between four domains (FBIE).

f1

i1b1i

f11

e1

f12
i2

e11
e12

f13

f2

b11a

b11i

b11ai

b11aa

f3 e2

Decomposition
Mapping

Comparison
Detailing
Interaction

f4 e3

f1

b1i

f12

e1

f11

i2

e11

e12

f13

f2

b12a

b12i

b12ai

b12au

f3 e2

Decomposition
Mapping

Comparison
Detailing
Interaction

f6
i3

f4 e3

e4

e41

e42
e5 b12aa

f5

 11

At this stage, which is shown in figure 9), a realistic engineering question is how the new
implemented concept (i2) fulfills the technical subfunction f12 and the environment function f2
(i.e., what is the real behavior b12a of the implemented structure). The secure seat function (f12)
is related to the stiffness and strength of the interface. The actual behavior is determined by the
interaction between i2 and e1, which can be decomposed into a static gravity field in the vertical
direction (e11) and transient acceleration field (e12) in the longitudinal direction. The
environment object e11 interacts with i2 in the entire material volume of i2, i.e. at a body
interface, which is a relation between the implementation and an external object such as the
environment or the user/operator. The actual stiffness of the truck floor (e41) and the seat (e42),
the weight of the driver (e5), and the prescribed static gravity (e11) and transient acceleration
field (e12) cause an actual behavior (b12a) of the screw joint (i2). The perhaps most appropriate
method to estimate the actual behavior, is to scrutinize the motions, forces, and stress results from
a simulation with an FE-model. Thermoelastic effects caused by microslip phenomena between
the interacting surfaces in the interface may cause excessive wear which is an unintended
behavior or side-effect (b12au). A side-effect may be decided to be acceptable and ignored or
alternatively it can be decided that it must be removed or reduced: This can, for example, be
accomplished by introducing a new function, which is represented by f6 in figure 9 and
implemented in i3.Too high stresses in the screws or too high forces transferred to the floor may
be classified as an accidental behavior (b12aa). An accidental behavior may be regarded as a
design error or fault and it requires a modification of i2 or a new implementation (i3), and so on
until the design is released for production

4 The behavior models in the FBIE approach
The relations between the behavior domain and the other domains in the FBEI approach are
described in chapter 2. It is important to observe that the behavior objects in the FBIE-graphs
shown above are explicit representations of intended and actual behavior. In model-based product
development, the actual behavior is typically transformed results from a simulation experiment
performed with a computer model or results from a physical test.

Question-driven modeling (QDM) [21] is a structured sequence of activities for situated model-
based product development. The purpose of QDM is to enable flexible knowledge acquisition,
generation, and reuse in model-based design. Engineering questions are frequently related to a
state of knowledge deficit. In QDM, a knowledge deficit is defined as a problem (required
knowledge ≠ available knowledge) and formulated as a question, which is addressed to a model.
Problem solving can thus be represented as a situated question-driven process. The model which
is required to address the question must consequently be targetted/optimized for its specific
purpose.

A QDM scenario [21] is modeled as a recursive workflow (see the left-hand side of figure 33)
with six distinctive steps or scenes:

1. Define the context-dependent engineering problem and reformulate it as one or several
question(s). The context may for example be a stored product model of an artifact.

2. Analyze each question and specify the requirements for a target model.

3. Synthesize (i.e., configure) a specific systems model that available knowledge suggests will
satisfy the requirements.

 12

4. Perform the simulation, or alternatively a set of simulations in probabilistic design, and store
the result as an aggregated information object.

5. Analyze the simulation result to verify and validate (V&V) the model. Store as information
object.

6. Synthesize an answer from the analyzed simulation results (and identify new questions).

Each activity in a question-driven modeling scenario needs input information, creates output
information, is controlled by information, and is performed by an engineer with the aid of a
mechanism or tool. The right-hand side of figure 10 shows an IDEF0- or SADT-based
representation of the six steps, or scenes, in a basic scenario workflow. Each of the scenario
objects (i.e., the question, model requirements, model simulation result, and answer) has an
owner attribute, a state attribute, and a causality relation to the object that was created in the
immediately preceding activity in the scenario workflow.

AnswerQuestion

Context

Model
Requirements

Simulation
Result

Model

Simulation
Result

ModelConfiguration

ModelRequirementsDef.

V&V Analysis

AnswerSynthesis

Simulation

QuestionDefinition

QuestionDefinition

QuestionDefinitionForm

Questions Question

ModelRequirementsDefinition

ModelRequirementsDefinitionForm

ModelConfigurator

Models

ModelConfiguration

Model
Require-
ments

Simulation

 Model

Simulation
Control

 AnswerAnswerSynthesis

V&VAnalysisSimulatator

QuestionSynthesisForm

V&VAnalysisForm

Simulation
Result

Objects

Answers

Figure 10. Question-driven modeling (left) and an activity view of a scenario loop (right), from [21]

The mechanisms in figure 10 are currently web-based forms, (e.g., one form for question
definition and another for model requirements definition), specialized configuration tools, and
industry-standard simulator tools (e.g., Ansys for finite element simulation and Adams for
multibody dynamic simulations).

Figure 11 shows the casual paths in QDM adapted to the FBIE-structure. A question of how the
actual implementation will behave is formulated. This question has a context relation to the
intended behavior. Then the question is analyzed the requirements for the target behavior model
is specified. Based on the model requirements, a systems model that available knowledge suggest
will satisfy the requirements is synthesized (i.e., configured). The simulation, or alternatively the
set of simulations in probabilistic design, is performed and the native results are stored. The
results are then analyzed and transformed to the targeted actual behavior and possibly further
decomposed into the as intended, unintended and accidental components. The actual behavior is
then used to formulate an answer to the original question.

 13

Figure 11. Causal paths between the FBIE domains and the behavior models required to assess the actual behavior of
an implementation.

5 Conclusions
A complex system is a system with many components and interconnections, interactions, or
interdependencies that are difficult to describe, understand, predict, manage, design, or change.
Engineering design and redesign of complex technical systems involves managing of complexity
and reduction of uncertainty and it, consequently depends much more heavily on computer
simulation than design of smaller and less complex products. The main objective for simulations
is to help reduce uncertainty by enabling identification of unintended and accidental interactions
between components and to assess and verify various features of the system in early design
stages.

This paper examines design reasoning and proposes a situated design knowledge management
framework, based on the Function-Behavior-Implementation-Environment model, with the aim
of supporting designing and redesigning and engineering of complex technical systems.

The framework integrates:

• A general modular modeling principle for technical systems [4].

• The concept of situatedness [5].

• The Function-Behavior-Structure (FBS) [16].

• The question-driven modeling (QDM) workflow model [21].

The presented framework, thus, extends the FBS-approach with the active environment including
the human user/operator and includes the reasoning process by adding casual paths between the
QDM reasoning and modeling process with the FBIE-domain objects.

The structure of the proposed framework has been conceptually described by elaborating on a
simple but not oversimplified industrial case.

7 Acknowledgements
The work presented here was performed in the Interface project and financially supported by the
Swedish Strategic Research Foundation.

References

Mapping

Comparison

Interaction

i

bj
Question

BehaviorModel ModelRequirements

bj

NativeResult

Answer i

fj

e

 14

 [1] ESD, “ESD symposium committee overview: engineering systems research and practice”,
Engineering Systems Division MIT, http://esd.mit.edu/ESD_Internal_Symposium
_Docs/WPS/ESD-WP-2003-01.20-ESD_Internal Symposium.pdf, May 2002.

[2] Aristotele, “Posterior analytics”, Translated by G.R.G. Mure.
http://www.philosophy.ru/library/aristotle/post_an/00.html, 350BC.

[3] Eris, O., “Asking generative design questions: a fundamental cognitive mechanism in
design thinking”, Proc. International Conference on Engineering Design ICED 03, August
19-21, Stockholm, Sweden, 2003.

[4] Sellgren, U., "Architecting models of technical systems for non-routine simulations,"
International Conference on Engineering Design ICED 03, Stockholm, 2003.

[5] Gero, J. , “Situated design computing: introduction and implications”, Proc. of the 8th
International Conference DESIGN 2004, pp. 27-34, Dubrovnik, Croatia, 2004..

[6] DOE, “Systems engineering and interface management”, Rev E, June, 2003,
http://oecm.energy.gov/Portals/2/SystemsEngineeringInterfaceMgmt.pdf, Program and
Project Management, U.S. Department of Energy, 2003.

[7] Koopman, Jr, P.H., ”A taxonomy of decomposition strategies based on structures,
behaviors, and goals”, Design Theory & Methodology Conference, September, 1995.

[8] Pahl, G. and Beitz, W., “Engineering design a systematic approach”, 2nd edition, Springer,
1996.

[9] Kitamura, Y, Sano, T., Namba, K., and Mizoguchi, R., “A functional concept ontology and
its application to automatic identification of functional structures”, Advance Engineering
Informatics, Vol. 16, pp. 145-163, Elsevier Science Ltd., 2002.

[10] Magee, C.L. and de Weck, O.L., “Complex system classification”, Fourteenth Annual
International Symposium of the International Council On Systems Engineering (INCOSE),
June 20-24, 2004.

[11] Hubka, V. and Eder, W.E., “Theory of technical systems”, Springer-Verlag, Berlin, 1988.

[12] Van Wyk, R.J., “A standard framework for product protocols”, in Khalil (ed.),
Management of Technology, Geneva, pp.93-99, 1988.

[13] Gero, J.S., “Design prototypes: a knowledge representation scheme for design”, AI
Magazine, Vol 11 (4), pp. 26-36, 1990.

[14] Qian, L. and Gero, J.S., “Function-behavior-structure paths and their role in analogy-based
design”, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 10,
pp. 289-312, 1996.

[15] Prabhakar, S and Goel, A.K., “Functional modeling for enabling adaptive design of devices
for new environments”, Artificial Intelligence in Engineering, Vol. 12, pp. 417-444,
Elsevier Science Limited, 1998.

[16] Gero, J.S. and Kannengiesser, U, “The situated function-behaviour-structure framework”,
in Gero, J.S (ed.), Artificial Intelligence in Design’02, pp. 89-104, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 2002.

[17] Suh, N.P., “The principles of design”, Oxford University Press, Inc., New York, USA,
1990.

 15

[18] Little, A., Wood, K., and McAdams, D., “Functional analysis: a fundamental empirical
study for reverse engineering, benchmarking and redesign”, Proc. of the 1997 Design
Engineering Technical Conference 97-DETC/DTM-3879, Sacramento, CA, USA, 1997.

[19] Stone, R., “Towards a theory of modular design”, Doc. Thesis, The University of Texas at
Austin, Texas, USA, 1997..

[20] Whitney, D.E., “Why mechanical design cannot be like VLSI design”, Research in
Engineering Design, Vol. 8, 1996, pp.125-128, 1996.

 [21] Sellgren, U., “Question-driven modeling”, Proc. of the 8th International Conference
DESIGN 2004, pp.503-510, Dubrovnik, Croatia, May 18-21, 2004.

Ulf Sellgren
Royal Institute of Technology
KTH - Machine Design
SE-100 44 Stockholm
Sweden
Phone: +46 – 8 790 73 87
Fax: +46 – 8 723 17 30
E-mail: ulfs@md.kth.se

