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Abstract 
Pattern languages may be a beneficial yet unexplored way to capture emergent know-how in 
design engineering.  A pattern is a natural-language, context-dependent description of a 
solution to a class of problems, that is both generative and descriptive.  This paper introduces 
patterns and discusses how they can capture know-how in design.  A key feature of patterns 
is their form: the style of their composition and presentation.  There is neither evidence to 
suggest the superiority of one pattern form over any other, nor reason to believe that any 
existent pattern form will be suitable for design engineering.  The author therefore introduces 
a new pattern form that is extremely adaptable while remaining true to the intent of the 
pattern approach.  Three patterns are given in their entirety to demonstrate the author’s form 
and suggest how patterns can capture and help communicate know-how.  Proper evaluation 
can only be undertaken once enough patterns have been written and used that empirical data 
can be developed; this has not yet been done.  However, early indications are that the pattern 
approach has good potential in design engineering. 

Keywords: pattern language, know-how, emergent knowledge, body of knowledge, design 
methods 

1 Introduction 

Engineering may be considered an exercise in communication.  Many agents and 
stakeholders must collaborate to make a good product because each has a unique and relevant 
perspective.  Expertise and know-how are important elements that engineers bring to the 
product development table, but expertise that cannot be shared with other agents in some 
sensible way is of relatively little use. 
In modern engineering settings, a tremendous amount of effort goes to capture, record, and 
communicate know-how, but no one has yet identified a single overarching approach or 
framework that reliably works in this role.  In the author’s experience, current methods 
typically used in industry settings tend to become quickly disused (see Section 2 for more on 
this matter).  The potential improvement in corporate performance if this problem could be 
addressed would be substantial. 
One approach that has not yet been tried in engineering is the method of pattern languages.  
Invented by the architect Christopher Alexander in the 1970s [1], pattern languages are 
informal, structured collections of natural language text that capture solution methods for 
classes of problems in defined contexts.  Pattern languages have been successfully applied in 
architecture, software engineering, process engineering, and management science.  They have 
not yet been applied in “conventional” (mechanical, civil, electrical…) engineering design.  
The reasons for this are not clear.  The author suspects, however, that this may have to do 
with the relatively “unscientific” way in which patterns have been described in the literature.  
For example, Alexander himself writes of the three-fold path to use patterns.  Such language 



is quite atypical in engineering, and it may be that engineers find it difficult to grasp concepts 
presented that way. 

In any event, it may be that design engineers have overlooked this potentially useful 
technique.  The author is carrying out research to study pattern languages, how they might be 
deployed to support the recording and communication of design know-how, and whether the 
design community would be receptive to pattern-based approaches.  This paper will explain 
how patterns might be used in design engineering. 

2 What are patterns? 

The best definition of patterns comes from Alexander himself [1]: “Each pattern is a three-
part rule, which expresses a relation between a certain context, a problem, and a solution.  
As an element in the world, each pattern is a relationship between a certain context, a certain 
system of forces which occurs repeatedly in that context, and a certain spatial configuration 
which allows these forces to resolve themselves.  As an element of language, a pattern is an 
instruction, which shows how this spatial configuration can be used, over and over again, to 
resolve the given system of forces, wherever the context makes it relevant.” 

In other words, a pattern has two aspects: a real aspect as a phenomenon or artefact, and a 
descriptive aspect as a generative explanation of how to design the artefact and why it works 
well.  A well-written pattern makes both these aspects evident.  The author summarises this 
in language more suitable to engineering as: a pattern models a relationship between a 
context, a system of drivers that occurs repeatedly in the context and that is in an undesirable 
state, and an entity that allows these drivers to be resolved, bringing about a more preferred 
state. 
The use of the word resolve is particularly interesting because it can mean either to solve or 
to break down into smaller units.  Both these connotations play a role in the pattern 
methodology because, as will be seen below, patterns are at their best when grouped into so-
called pattern languages. 
A pattern is, then, a (re)solution specification for a class of problems, written in natural 
language.  The application of a pattern (i.e. a designer following the pattern to resolve a 
problem) results in a design that accounts for contextual issues explicitly.  They are written 
following one of several available forms.  Each form was developed for the sake of particular 
application domains.  Nonetheless, all forms share certain key features, described below. 

1. A Descriptive Name.  A pattern is named by the kind of artefact that results from its 
application.  A good pattern name captures not only the nature of the resulting artefact but 
also its purpose in the context. 

2. A Problem Statement.  Usually restricted to only one or two sentences, the problem 
statement is usually written as a description of an undesirable (or unbalanced) situation 
that must be resolved – in other words, a need to be addressed.  By describing the 
problem situationally, one acknowledges the importance of context explicitly. 

3. A List of Problem Drivers.  In the pattern literature, the drivers are usually called forces 
that are unresolved in the problem.  Since the term force has many other connotations in 
engineering, the author prefers the term driver.  The drivers are usually written as a point-
form list of features that must be balanced in a good solution.  (The notion of balance is 
explained in detail in Section 3.1.) 



4. A Context Description.  While the first three items above describe a situation in general 
terms, the context description allows more detail to be provided.  Different solutions can 
arise from the same problem occurring in different contexts.  Contextual information is 
essential to choose an appropriate pattern.  The context description is grounded in the 
listing of drivers; that is, it explains why the drivers matter.  It should be general enough 
to indicate clearly the breadth of applicability of the pattern, yet not so broad as to be 
merely a general goal. 

5. A Procedural Solution.  An explanation of how the drivers are achieved, typically written 
as steps to be followed by the pattern user to generate an artefact that balances the drivers.  
References to other patterns are common in this description. 

6. Consequences of Application.  Implementing a solution to a problem changes the context 
of the problem.  This means that applying patterns affects the situation that drove the 
pattern’s use to begin with.  These consequences are not always positive ones.  It is 
important that a pattern include a description of all the possible consequences of a 
pattern’s application, both good and bad, so the pattern user can prepare better for 
changes in the situation where the problem occurred. 

While nearly all well written patterns provide all this information at least to some extent, the 
actual form of the pattern description (the composition and structure of the natural language 
text that defines the pattern) can vary significantly.  The matter of pattern form is addressed 
below. 

Not all patterns are widely adopted within their target disciplines.  Adoption is generally 
considered the ultimate mark of a successful pattern.  Over the years, researchers have 
studied successful patterns to identify characteristics that might help pattern developers know 
when they have found or written a good pattern [2,3].  Having surveyed this work, the author 
summarises below some of these characteristics. 
Generativity.  A good pattern teaches us how to build their manifestations. More than an 
instruction set (or cookbook, or algorithm), a good pattern indicates the dynamic nature of its 
implementation, its adaptability, flexibility, and robustness. Because of their instructional 
nature, it should be possible to visually depict the kind of structure that results from a pattern 
application, at least in general or schematic terms. 

Descriptive.  A good pattern gives a sense of what its manifestation might look like. Telling 
how to resolve a problem is not enough; the pattern must also describe the nature 
(“structure”) of the solution, at least in a general way.  
Explicative.  A good pattern gives a sense of the reasons why the solution is appropriate (as 
opposed to alternative solutions).  Users can judge if the reasons hold for their own context.  
Recurrence.  A pattern must be a recurring phenomenon. Typically, three existing instances 
should be identified of a proposed pattern successfully resolving a problem. Patterns must 
exhibit a record of success. Successes should come from throughout the range indicated by 
the context of its use.  It is also relatively common practice to at least mention some cases in 
which the pattern is known not to work; these cases, usually called contraindications, can be 
very helpful to users deciding whether or not a particular pattern will work well for them. 
Non-definitive.  Alternative solutions may exist to any pattern.  Just because a pattern exists 
for some class of problem does not mean it is the only way to (re)solve the problem.  Many 
pattern formats include a specific section enumerating other patterns that apply to the same or 
similar problems, expressly to ensure that the pattern’s user recognises its non-definitive 
nature. 



Context-sensitivity.  Although it may be quite general, a pattern only works in, and should 
be described with respect to, a single context. That context must be described sufficiently 
well to let potential users decide if the pattern will work in their context.  While broad 
contexts are acceptable, universally applicable solutions (i.e. solutions that are context-
independent) are generally considered inappropriate. 
Relational.  Patterns must address the relationships between context, drivers, and solution; 
they must describe how and why their manifestations interact within a context, and the 
interactions between sub-patterns, super-patterns, and co-patterns. 

Assistive (to humans).  A user of a pattern must find the pattern useful to (re)solve the 
problem drivers.  Patterns that users find difficult to use or obtuse are not considered good 
ones.  Useful patterns will help human users develop better actual solutions to specific 
problems. 

Evolving.  Patterns can change over time, as users “tweak” its specification in response to 
reports of its usage.  In many cases, patterns are developed collaboratively in groups [4] and 
are revisited and updated regularly.  As artefacts themselves, pattern descriptions can be 
thought of as living documents and as such can not only improve with time but also devolve 
into uselessness. 
A good pattern is, therefore, a descriptive guide and a mechanism for knowledge transfer 
between individuals and groups.  Although computer support for pattern management and use 
is possible, patterns neither encode knowledge in a computable form nor automate design.  
Instead, patterns are intended to stimulate thinking and learning by users. 
A group of tightly integrated patterns covering entirely a domain of interest is a pattern 
language (e.g. [1,5]).  Pattern languages can represent bodies of knowledge on particular 
subjects.  For example, Alexander’s pattern language [1] ostensibly describes solutions for 
every kind of problem faced by architects ranging from locating urban/suburban regions to 
the positioning of photographs and other decorations on the wall of rooms. 

Pattern languages are often developed collaboratively.  The collaborative authoring group is 
usually a subset of the community most likely to use the language, typically each with some 
degree of expertise in the area.  Each contributor to such a project can get a very significant 
return on the investment of their time, because the contributor has access to the entire 
language in exchange for developing and maintaining (usually) just a few patterns.  Measured 
in this way, pattern languages can yield a substantial return on investment.  This is especially 
important in corporate settings, where employee efficiency is a key corporate success factor. 
Since a pattern must be “proven” in that its application must have had a number of 
demonstrably successful cases, one may argue that their use stifles innovation by preferring 
existent solutions.  However, this is not necessarily the case.  Firstly, patterns are only best 
practices within identified contexts.  In different contexts not covered by one pattern, other 
patterns might be better suited.  Contexts can become obsolete.  For example, as globalisation 
becomes more important in engineering, patterns that applied in strictly local settings become 
inappropriate.  By including contextual information, a user can make an informed decision 
about when not to use a pattern.  In this case, an opportunity for innovation is identified (i.e. 
the existent way of doing things – the existent pattern – is not good enough). 

Secondly, pattern languages are neither prescriptive nor universal.  They are only guidelines 
and as such can be used as a springboard to thinking about different possibly more innovative 
solutions.  The pattern approach can also be used to write innovation solution methods; the 
pattern author would simply not report on the pattern’s record of success.  This will 
immediately inform a potential user that the pattern is only tentative.  In time, successes of its 



use may be added to the pattern – indeed, the pattern itself may be refined to account for the 
experiences of its user community. 

Thirdly, patterns can be used as “jumping off points” for reasoning about innovative 
solutions entirely different from the pattern itself, exactly because sufficient contextual and 
procedural information is given in a good pattern to stimulate such thinking (assuming the 
user has the interest and training to carry out such a thinking exercise).  

Finally, innovation can be related often to some insight derived from having a broad and 
diverse range of experience (e.g. design by analogy).  Patterns provide a mechanism for a 
designer to scour available information for reports of experiences that the designer himself 
might not have.  Thus, “browsing” pattern languages can help identify opportunities for 
innovation. 
Therefore, the author believes that patterns do not necessarily stifle creativity and, in fact, 
may encourage innovation if they are not abused. 
Pattern languages impact directly the recording of know-how in industry.  Practising 
engineers have often recounted how “procedures” that were carefully documented at 
significant expense end up in dusty, unused manuals.  When asked, these engineers explain 
that only experts who already understand the procedures can understand the documents.  This 
is not necessarily a function of the complexity of the knowledge, but rather often a result of 
how the material is presented.  Pattern languages are meant to promote better transfer of 
knowledge through written text, so it is likely that good patterns will help in these cases.  
Their success in software engineering and architecture are a testament to their capacity in this 
regard.  Unfortunately, the know-how typically captured in engineering “procedures” is 
highly proprietary; it has been difficult to gain the confidence of industry needed to allow that 
knowledge to be shared with us for the sake of writing patterns for them.  Nonetheless, we 
continue to promote the pattern approach and are confident that a few small successes will 
lead to a gradual adoption of the method in time. 

3 A three-part framework for pattern usage 

Alexander developed the Three-Fold Path to summarise his philosophy of pattern usage.  
The current author has adapted Alexander’s work for engineering by translating it into a form 
more consistent with design engineering terminology.  This leads to a three-part framework 
for pattern use in design engineering, described below. 

The goal of the framework is to present in broad strokes the overarching situation in which 
pattern languages are best employed.  The author has kept the framework presented here no 
more or less general than Alexander’s Three-Fold Path. 

3.1 Part 1: balanced design 
Some designs satisfy not only their technical requirements, but are also suited to a market, 
represent a good business tactic, and satisfy a societal need.  They address issues of 
aesthetics, usability, etc. as well as fitting into a global context. They have a certain appeal at 
every level that makes them greater than the sum of their parts or functions, by finding a 
dynamic harmony among the competing problem drivers.  The author call such designs 
balanced.  Examples of balanced designs include: the DC-3 and the Boeing 747, the 
(original) VW Beetle and the Studebaker, the first Palm Pilot and the Apple iMac, the BIC 
ballpoint pen and the Mont Blanc fountain pen.  Balance is a way of thinking about the match 



between a context (which changes in time) and a design.  Balanced designs hit a “sweet-spot” 
within their particular contexts.  If they had been brought to market too early (e.g. the Apple 
Liza) or too late (imagine trying to sell the original 747 in today’s market), then they would 
have seemed unbalanced.  Striking the right balance is like hitting a moving target. 

There are no known methods for assuring that a particular design is well-balanced, yet such 
designs remain the ideal of all engineers, and are quite readily identified where they exist.  
Well-written patterns can help achieve balanced designs because they address the act of 
balancing a design directly. 

The “living,” evolutionary nature of patterns helps keep them current.  Individual patterns can 
be updated regularly and in a structured, predefined way, or in a more informal way, 
depending on the situation and the preferences of the pattern developers.  Since patterns are 
usually developed by people likely to benefit from their use, they are often a very reliable 
source of know-how. 

3.2 Part 2: tempered creativity 
A pattern language gives an architecture for human cognitive design activities within a 
domain to temper creativity with reason, and to provide coarse guides to direct the creative 
energies of designers.  A pattern language is a tool that augments designers’ innate and 
learned skills by suggesting potentially successful routes and providing warnings to pitfalls 
and problems.  Patterns therefore provide “checks and balances” to help control the 
possibility of making significant design errors. 
The notion of “tempered creativity” is very important in engineering design.  Innovation is 
often described as a corporate requirement, but innovation implies risk.  Corporations need to 
balance the benefits of innovation against the risks.  Too much innovation is just as 
dangerous as is not enough.  Being able to temper the creativity required for innovation is one 
way to achieve this. 

Patterns help temper creativity by describing both the good and bad characteristics of a 
particular solution, and by indicating descriptively albeit generally the amount of work 
needed to bring a design into being.  They promote considered thought of the advantages and 
disadvantages of a solution within a context and help create a corporate mindset that is more 
likely to understand the inherent benefits and risks of a design in the broadest sense. 

3.3 Part 3: top-down systems design 
Within the pattern-based approach, the “best” processes are top-down and systems-based.  
They start by considering the role of the product in larger operational contexts – such as 
determining first the user requirements for a nondescript product – and then detailing the 
product to satisfy those requirements. 
Requirements specifications often emerge in parallel with the design solutions – this is 
sometimes called co-evolution.  Patterns would be used after a phase of requirements 
specification has occurred, as a means of matching requirements to possible solutions.  The 
pattern approach therefore fits quite well with typical design processes.  Pattern languages 
can be laid out to correspond to the different levels of detail in a product development 
process to help organise and manage know-how. 



3.4 Summary 
We see then an emerging general framework for the development and use of patterns.  
Patterns are inherently systems oriented if for no other reason that they always include the 
product being designed, operating environment, and other agents (human or otherwise) that 
will interact with the product (i.e. the context).  Patterns work best in top-down development 
processes because these ensure the primacy of the context of use.  They promote clear 
thinking without removing the opportunity for innovation, thus facilitating efficient and 
effective design work.  Finally, they address directly the multi-objective nature of any design 
problem by facilitating balanced designs. 
This framework is presented to roughly the same level of detail as Alexander’s original.  The 
intention was to recast Alexander’s notions for engineers without making statements that 
might misrepresent the original work.  In a sense, it is contrary to the pattern approach to 
“give away all the answers” by detailing the framework to a significant degree.  Patterns 
intended after all to promote curiosity and thinking, to stimulate new ideas.  Detailing their 
use pre-empts a user’s own need to struggle with the notion and achieve one’s own personal 
understanding – to learn deeply – what patterns are. 

4 A form for engineering design patterns 

In the patterns community, the term form is used to describe the structure and layout of a 
pattern description.  Various forms have been used by other practitioners of the approach.  
The differences between forms usually arise from the needs of the form developer to address 
particular features of the domain of interest.  They are most pronounced between different 
disciplines (e.g. software development versus architecture).  Since patterns have not yet been 
used in conventional engineering, it is important to examine the notion of pattern form, to 
ensure a form for engineering design patterns is well suited to the discipline. 

The simplest pattern form is called therefore-but.  There are three sections to patterns defined 
with this form: a problem statement, a description of how the problem is (re)solved, and a 
discussion of consequences arising from the pattern’s application.  The three parts are 
literally separated by the text therefore (between the problem and solution) and but (between 
the solution and the consequences).  While this form is extremely simple and therefore 
flexible, it can lead to disorganised and inconsistent descriptions of patterns which makes 
them difficult to understand and apply.  It is, however, especially useful for capturing short 
patterns that encapsulate some kinds of best practices or general principles.  For example, 
refer to Figure 1. 

Figure 1: A sample pattern using the therefore-but pattern form. 

Most other forms have many very specific sections, such as: problem statement, background 
information, drivers, symptoms, renderings of typical results, solution procedure, solution 

Pattern: Involve Users Actively. 
You need to ensure that the needs of all users are addressed during product design. 

Therefore: Include representatives of the user community in the design team from the 
outset, and charge them to liaise with other user groups and the design team. 

But: Beware that user representatives may selectively filter or change the information 
passed to them by other users in accordance with their own biases and preferences. 



structure, contraindications, examples, and lists of related patterns, and other reference 
materials.  While this more fine-grained structure can help organise pattern descriptions 
(making them easier to search, for example) it can be distracting to pattern authors.  
Sometimes, a pattern author will include text in a particular section simply to have something 
there, regardless of whether it really contributes to understanding the pattern – authors can 
feel obliged to write material to fill in form sections that detracts from the clarity of the 
presentation in the long run.  Furthermore, pattern authors may find it necessary to repeat 
information in multiple sections because the pattern form is not well suited to that particular 
pattern or that particular pattern author’s writing style.  That is, authors may feel constrained 
by the form to break the natural flow of exposition of a particular pattern.  It is important to 
write the pattern so the presentation of material flows easily.  This greatly facilitates users’ 
comprehension of the pattern. As a general rule of thumb, a pattern is well written if one can 
read it from beginning to end without having to skip forward or reread previous material to 
understand the pattern well.  Sometimes, having too many sections virtually forces a pattern 
writer to violate this rule of thumb. 
The present author has decided to develop a new form that is a variant of therefore-but.  The 
reason for this is that pattern languages have not yet been used in conventional (e.g. 
mechanical, electrical, civil, etc.) engineering domains, and it is not clear what level of 
granularity is appropriate.  Instead, the author’s form contains the three major sections of the 
therefore-but form, but makes additional recommendations on the nature of the contents of 
each section.  The recommendations are reminiscent of the more detailed pattern forms, but 
are largely optional in nature.  One hopes that this will encourage pattern writers to adapt the 
form to the needs of the particular pattern they are writing, while giving them a base well 
rooted in the existent literature. 

While “therefore” seemed like the most obvious choice to link the problem and solution, the 
author did consider using some different word instead of “but” (e.g. “consequences” or 
“caveats”).  These other words, however, seemed to have more limited connotations.  
“Consequences” implies a causal (and possible exclusive) relation and “caveats” suggests 
conditions or constraints.  “But,” on the other hand, seemed to carry all these connotations 
and more.  Because we do not want to bias unnecessarily a pattern writer’s thinking by 
having particular connotations of these guidewords, “but” was retained in the author’s pattern 
form. 

The form is outlined below.  It was developed to address all the characteristics of good 
patterns identified in Section 2. 



Figure 2: General structure of the author’s pattern form. 

5 Three sample patterns 

In this section, three patterns are presented to further explain the author’s pattern form.  The 
formatting of these patterns has been slightly modified to suit the conference format.  
Underlining is used to indicate the name of another pattern.  Note that the third example is 
taken from the documentation for a software tool being developed by the author to support 
the use and development of pattern languages.  The tool, called Xiki, is briefly described in 
Section 6. 

5.1 Sample pattern #1: variable fluid mixer 
Problem: design a system that mixes fluid (including powder) ingredients, controlling 
production rate and mix ratios. 

Descriptive Pattern Name 
Author(s), modification date 

Problem: A one-sentence statement of the problem, expressed as a need to be addressed. 
Paragraphs describing the context of the problem. 

Indicate as appropriate any known contraindications to the use of this pattern. 
The key drivers are: 

• a point-form bulleted list of problem drivers. 
Therefore: A short instructive phrase indicating the nature of the problem solution, 
expressed as a directive to the pattern user. 
Paragraphs describing the tasks to be carried out to (re)solve the problem, leading to at 
least a conceptual description of the resulting artefact. 
Indicate the relationship of the described solution to other patterns, solutions, or methods. 

Include a description of how the artefact resulting from the pattern’s application is used, 
initialised, and maintained.  Refer to other patterns as appropriate. 

But: 
Paragraphs describing the consequences of using this pattern, paying particular attention 
to changes of the context resulting from the pattern’s application.  Ensure that any known 
consequences that are known to be detrimental are explicated. 

Specific examples may be provided of the successful application of the pattern.  These 
may be kept in separate documents and only referenced here.  Ideally, there should be 
three distinct examples, each as different as possible from the others. 
If possible, examples of cases where the pattern does not work should be provided. 

See Also: (optional) 
• Another Pattern Name – brief description of its relevance to the current pattern 

(must not be a pattern already cited in the body of this pattern). 
 



Sometimes, the same equipment may be used to mix different ingredients at different mix 
ratios to produce different products (EG: mixers for paint, fertilisers, or dry ingredients of 
baked foods).  Although variability in mix ratio rarely affects production rate in such cases, 
even small mix ratio variations can lower product quality. 

Modular design suggests there are advantages to duplicating the ingredient delivery system 
identically for each ingredient (for example, having a separately driven pump for each 
ingredient) to get economies of scale in the subassemblies.  However, variation in the relative 
rates of the motors that drive the pumps can cause unacceptable variations in the mix ratio.  
The variation arises because the motors, though structurally separate from one another, are 
functionally coupled: the mix ratio is determined by all motor (and hence pump) speeds and 
their associated variations, which are additive. 
Furthermore, many environments in which this situation can occur are “dirty;” i.e. there is an 
assortment of contaminants in the operating environment that can hinder relatively delicate 
control machinery or electronics.  

Key drivers are: 
• Fine control of mix ratio is required 
• Delicate electronics should not be used because of dirty environment 
• The mix ratio must be adjustable 
• The mix ratio variability must be low 
• Reliability must be high 
• Capital, operating, and  maintenance costs must be kept low 

Therefore: design a functionally modular system. 

Design the system to consist of independent functional modules.  Assign one pump per 
ingredient, but use a single motor to drive all the pumps, and variable ratio gearboxes to vary 
the speeds of the pumps (and therefore the mix ratio).  The variability arising from a single 
motor and a single gearbox will be transmitted proportionally to all pumps, effectively 
cancelling it out or at least dramatically reducing it. 
This solution is consistent with Axiomatic Design [6].  The functional requirements of this 
product are (a) it must produce the right amount of product and (b) it must mix the 
ingredients correctly.  If separate motors drive each pump, then the design parameters are the 
speed of each pump.  This induces a fully coupled design, which is undesirable. Setting the 
speeds of the motors to achieve prescribed productivity and mix ratio values becomes an 
iterative process.  Variation over time in the speeds of the motors requires active, dynamic 
control of the system. 

However, if using a single motor and variable ratio gearboxes, the design parameters are the 
speed of the motor and the gearbox ratio; this design is decoupled, which is preferred.  
Setting the motor speed and gear ratios is not an iterative process and does not require active, 
dynamic control. 

But: 
Selection of gears and calculation of tolerances must be done carefully, to minimise 
variability of the gearboxes between gears. 
Functional modularity introduces structural coupling here.  One must pay attention to 
ensuring this coupling does not lower reliability in specific cases.  Reliability Analysis and 
Failure Mode And Effect Analysis are recommended methods to assess this. 



Structural modularity can be salvaged to a degree by designing the shafts and structural 
elements to facilitate replacement of gearboxes, pumps, the motor, and other major 
subsystems. 
Furthermore, particular attention must be given to the gearbox design or specification.  
Backlash and other effects must be accounted for to ensure the gearbox is properly specified 
to prevent a quality loss similar using multiple motors. 

5.2 Sample pattern #2: free body diagram 
Problem: you need to model the geometry, applied forces, and resultant forces in an object. 
When you carry out a Static Behaviour Analysis of a structure, you must understand the 
Kinds Of Forces and Kinds Of Constraints acting on the structure.  A key element of such an 
analysis is to represent the geometry and loading conditions of the object.  However, as the 
analysis is only approximate, one does not need much detail.  You need to capture the 
minimum amount of information needed for the analysis; too much information can lead to 
errors and confusion in the analysis.  This clarifies thinking about the problem and facilitates 
calculations. 
Key drivers are: 

• the model must be as simple as possible 
• the model must include contain all required geometry, loading, and constraint 

information 
• the model must not require significant effort to render 
• the model must be a “standalone” representation of the model (so that it can be reused 

in other settings) 
Therefore: Use a free body diagram to model the problem. 

A free body diagram (FBD) is a simplified diagram that models an object and the loads 
applied to it that helps calculate other forces in the object (see What Are Forces?, What Are 
Moments? and Why Do Objects Resist Forces?). 
Identify clearly the goal of the analysis (e.g. Find the forces acting in the member X of the 
object).  The goal usually involves finding a particular force or moment in a member or 
element of the object.  If the goal is to find more than one force or moment, treat each one as 
if it were a separate problem. 
Create a Geometric Schematic of the object.  Use Arrows To Represent Forces (both Applied 
Forces and Reaction Forces). 
Indicate clearly on the diagram the Static Boundary Conditions of the problem. This will 
identify which Degrees Of Freedom (DOFs) are fixed and which are free.  We assume a 
Perfectly Rigid Frame unless told otherwise. Fixed DOFs will generate Reaction Forces; free 
DOFs will not.  (What does a free DOF generate instead of a reaction force?) 
Consider the connections between the object and the frame, and identify only the fixed 
connections.  In the diagram, replace the frame with arrows that represent the Reaction 
Forces caused by the fixed DOFs between the object and the frame. 

Identify on the sketch the member that is referred to by the goal. 
Use a FBD Cutting Line to Split The FBD.  The cutting line must pass through the member 
referred to by goal.  This splits the object into two disconnected “chunks.” 
It is important to Match The Cutting Line To The Problem. 



From now on, consider only one of the two chunks that result from the cutting operation.  
Choose the chunk that has the fewest unknowns; disregard the other chunk. 

Where the line cuts each member in the chunk, draw a vector representing a force that would 
have been caused by the chunk of the object that you sliced away; that is, Substitute Forces 
For Members in the chunk. 
Now one can apply Summation Of Forces on the Force Components and Summation Of 
Moments on the Moment Components to develop a set of equations describing the static 
loading of the chunk.  In the set of equations, one unknown will be the force in the member 
referred to by the goal of the analysis.  There will be others.  One can then solve this set of 
Simultaneous Equations that result to determine the required force. 

Remember to report all results using the appropriate Significant Digits and Units Of Measure. 
But: 
If one chooses poorly the members to cut, one may have too many unknowns to solve.  One 
then must redo the Free Body Diagram differently, choosing a different FBD Cutting Line.  
This wastes time.  It is far more productive to invest time early on, choosing the best 
members to cut; this will significantly speed up finding a solution, and the solution will 
generally be easier to calculate. 
Learning how to identify the best FBD Cutting Line is something best done by practice.  It is 
therefore in the student’s best interest to do as many problems involving free body diagrams 
as possible.  In time, finding the best cutting line will become second nature. 

If the goal involves finding the forces in many members in an object, it is likely that you will 
have to make different cuts to solve for different forces.  This will require re-sketching the 
geometry, and rebuilding the Free Body Diagram. 

5.3 Sample pattern #3: Uploading files in Xiki 
Problem: you want to make a particular file (say, an image or a file created by a word 
processor) available to others, but you do not have access to a web site to which you can post 
such files. 
Xiki is based on users typing source text into Xiki Topics.  It is not productive to re-type 
material already available in, say, MS Word.  Furthermore, if you cannot otherwise make 
images available through a web server, you need a mechanism to make those images 
available. 

Key drivers are: 
• Make non-text files available to others 
• Maintain security of files and of server access 
• Minimise contributor’s workload to make those files accessible 

Therefore: upload files using Xiki. 
Many wikis allow files to be attached to topic pages.  Xiki provides a more general 
mechanism of uploading files to be associated with a particular Xiki Web. 
To upload an attachment: 

1. Use the browse button at the bottom of a Xiki page to identify the file on your 
computer that you want to upload to Xiki.  This will automatically fill in one of the 
two boxes in the Upload area. 



2. Add a brief description of the file in the other text box (no more than 255 characters). 
3. Hit Return. 

4. You will see a message just above the topic name indicating whether the upload was 
successful. 

A record of the upload is placed in the Uploaded Files topic in the current Xiki Web.  
Typically, the Uploaded Files topic will appear in the Web Menu if it exists – i.e. if at least 
one file has been uploaded. 
To refer to an uploaded file in a topic, either: 

A. For an uploaded file named Fred, refer to \Attachments/Fred in any topic in 
that Xiki Web, and it will be rendered as a link to the uploaded file.  If the uploaded 
file is an image, then the image will be rendered directly. 

B. Go to the Uploaded Files topic and copy the link (typically, right-click and select 
from the popup menu) of the desired file.  Then use a Xiki editing session to paste the 
link into another topic. 

But: 
Uploading only works for authenticated users (i.e. not for Guest User).  Unauthenticated 
users will not see the upload area at all on any page, but they will see links to uploaded files 
and they will be able to download those files or see those images. 
The exact location of the upload area will vary depending on the Xiki Skin you are using.  In 
the Basic Skin, it appears at the bottom of a page. 
Uploading a file will permanently destroy any other file by the same name. 

On the other hand, uploaded files are not deleted when the topics that refer to them are 
deleted.  This means that the number of uploaded files can grow without bound. 

5.4 Remarks regarding the examples 
The first example shows how a pattern can capture a “best practice” in more detail than a 
simple statement like “prefer functional modularity to structural modularity.”  We also see 
both the operational and descriptive nature of the pattern.  It is easy to visualise a schematic 
configuration of the resulting product, and it is evident the solution has disadvantageous as 
well as advantageous consequences.  Relations are drawn to other methods (e.g. Axiomatic 
Design and FMEA).  This pattern may not be perfect, but one would expect users of the 
pattern to maintain it, adjusting it over time. 
The second example indicates how patterns could be used in education.  The Free Body 
Diagram pattern is designed to be part of a pattern language for an introductory course in 
static analysis that is typical in mechanical engineering curricula. There are extensive 
references to other patterns.  Each pattern represents a unit of knowledge that students should 
learn.  One can envision a graphical index of the pattern language such that nodes are patterns 
and arcs are references of one pattern in another.  Various paths will exist through all the 
patterns.  The resulting “web” gives instructors many alternatives to the strictly linear 
presentation typically found in textbooks on this subject.  Some instructors might choose to 
cover all the patterns used by a pattern like Free Body Diagram before covering the pattern 
itself.  Other instructors may choose to use a “just-in-time” teaching approach.  Students, 
when studying the material individually, can easily select to follow paths through the pattern 
language different from those followed by the instructor.  By compartmentalising units of 



knowledge into patterns, it should be possible to help students remember possibly complex 
solution methods as discrete sequences of steps.  The relative brevity of each pattern should 
also help retention of the materials. 
The third example is drawn directly from the documentation of Xiki, a software tool being 
developed by the author to support the development and use of pattern languages in design 
engineering.  This example is intended to show how simple know-how and instructional help 
can be captured by a pattern.  The particular pattern shown is for uploading attachments into 
a collaborative workspace.  It refers to other elements of Xiki documentation, but remains a 
self-contained unit addressing a particular function provided by the software.  Further details 
about Xiki are given below. 

6 Discussion 

While pattern languages are not inherently computer-based tools, they can benefit from 
computer support.  It is easy to envision Web technologies being used to interconnect 
patterns, creating online repositories of pattern languages. 
Indeed, one specific Web-based tool has been nearly universally adopted to facilitate the 
creation and use of pattern languages: a Wiki.  The Wiki (meaning quick in Hawaiian) was 
invented by Ward Cunningham not long after the Web itself was invented [7].  Wikis use 
simple server-side technologies like CGI scripts to create collections of information that can 
be edited by anyone via a conventional browser.  The author is developing a new Wiki, called 
Xiki, for use in engineering design settings.  Details on Xiki are available in another ICED 05 
paper by the current author.   The key feature of Xiki that pertains to pattern languages is it 
can automatically create links between web pages based on wiki words.  A wiki word is a 
string of capitalised words run together without spaces.  For example, FreeBodyDiagram 
and ReactionForces are examples of wiki words.  Xiki interprets such strings as 
references to other pages by the same name and renders the strings as links pointing to the 
appropriate URL.  Thus, ReactionForces is rendered as a link to a page name Reaction 
Forces.  By giving each pattern its own page in Xiki, we can trivially interconnect patterns by 
using wiki words.  There are other features of Xiki that help support pattern languages; they 
are discussed in the author’s other paper. 
The author has used patterns in teaching settings and found that they can promote more rapid 
uptake of know-how by students.  Developing course notes using patterns (especially with 
computer support by a wiki) significantly improves their development and maintenance – 
even compared to more powerful content management systems like Blackboard – allowing 
the instructor to spend more time actually teaching.  Informal studies conducted by the author 
suggest the pattern approach can be a valuable aid in recording and transferring know-how, 
and that students are able to remember material better because of the “chunking” of units of 
knowledge in patterns.  Of course, more rigorous studies need to be carried out, but a 
sufficiently broad set of patterns must be created first that have value to a user community 
(be they students or practicing engineers).  As the author builds a broader collection of 
patterns, we will continue to test their usefulness in a variety of educational and industrial 
settings, and will be able to report on this work further in two years. 
Finally, it has been a common observation about pattern languages that the act of their 
construction can significantly refine the level of understanding of a subject by at least the 
pattern development community.  This is because as patterns evolve, bodies of knowledge 
emerge from the interconnected patterns.  Pattern forms are usually structured enough to 



make explicit many relationships that might only otherwise be implied, while maintaining a 
high degree of flexibility and adaptability.  The obvious application here is to furthering our 
understanding of design and the possibility of evolving a body of knowledge for our 
discipline. 

7 Conclusions 

The author has introduced pattern languages as a means to capture know-how in design.  
Though successful in other fields, the pattern method has not yet been applied to 
conventional engineering settings.  A new pattern form for design pattern languages has been 
presented, with three examples that demonstrate what actual patterns can look like.  Early 
analysis of the use of the pattern method shows promise but more analysis must be done once 
a more extensive collection of sample patterns has been developed.  Preliminary results 
indicate that there are no inherent hindrances to the application of patterns in design 
engineering, and that well written patterns can communicate some kinds of knowledge 
effectively.  Within the next two years, we expect to conduct more formalised evaluations of 
the method. 
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